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SUMMARY 

In this paper we proposed a method to improve the accuracy of prediction of genomic best 

linear unbiased prediction (GBLUP). In GBLUP a genomic relationship matrix (GRM) is used to 

define the variance-covariance relationship between individuals and is calculated from all 

available genotyped markers. Instead of using all markers to build the GRM, which is then used 

for trait prediction, we used an evolutionary algorithm (differential evolution – DE) to subset the 

marker set and identify the markers that best capture the variance-covariance structure between 

individuals for specific traits. This subset of markers was then used to build a trait relationship 

matrix (TRM) that replaces the GRM in GBLUP (herein referred to as TBLUP). The predictive 

ability of TBLUP was compared against GBLUP and a Bayesian method (Bayesian LASSO) using 

simulated and real data. We found that TBLUP has better predictive ability than GBLUP and 

Bayesian LASSO in almost all scenarios.  

 

INTRODUCTION 

Genomic selection is a method based on marker-assisted selection that is used to determine the 

genetic value of individuals so that they can be selected as parents in breeding programs. In 

genomic selection, marker effects are estimated from a discovery (or training) dataset that 

comprises individuals that have both genotypic and phenotypic information. Then genomic 

estimated breeding values (GEBV) for selection candidates without phenotypic records are 

estimated based on these marker effects. Within the framework of genomic selection, two different 

approaches are commonly used to estimate the marker effects in the training data. The first 

approach assumes all SNP have a non-zero contribution to the variance of the trait of interest and 

the distribution of the SNP effects follows a normal distribution. Both ridge regression best linear 

unbiased prediction (RR-BLUP) and genomic best linear unbiased prediction (GBLUP) are based 

on this assumption. The second approach is based on non-linear methods that emphasize certain 

genomic regions and allow marker effects to come from different statistical distributions. Bayes A, 

Bayes B (Meuwissen et al. 2001), Bayes C (Habier et al. 2011) and Bayesian LASSO (Least 

Absolute Shrinkage and Selection Operator) (de los Campos et al. 2009) are examples of such 

non-linear methods for genomic selection.  

GBLUP was first suggested by VanRaden (VanRaden 2008) and has been used for prediction 

of breeding values for use in agricultural selection programs (Goddard & Hayes 2009). In GBLUP 

a genomic relationship matrix (GRM) is used to define the variance-covariance relationship 

between individuals and is calculated from all available genotyped markers. Most of the proposed 

(VanRaden 2008; Goddard et al. 2011) implementations of the GRM are based on the 

infinitesimal model which assumes that a very large number of genes are evenly distributed across 

the genome, each contributing a minute amount to the trait of interest. In GBLUP the same GRM 

is used for the estimation of GEBV irrespective of the trait. Most traits of interest in animal or 

plant breeding are in fact polygenic but not necessarily infinitesimal; i.e. different traits are 



 

 

controlled by (a limited) different sets of genes. The true underlying genetic structure of any trait 

deviates from the infinitesimal model to a certain extent and most quantitative traits are 

significantly affected by a finite set of genes (Meuwissen et al. 2001). Therefore, a GRM estimated 

based on the assumption of the infinitesimal model cannot optimally describe the variance-

covariance relationships between individuals for the trait of interest. A model that uses only the 

SNP that track the relevant regions (QTL) of the traits of interest may be more appropriate to 

construct the variance-covariance relationship matrix.  

Whereas methods that place different weightings on markers have also been proposed (i.e. 

Bayes A, B, C, and R), studies in which evolutionary algorithms like Differential Evolution (Storn 

& Price 1995) were applied to solve such a problem are few. Differential Evolution (DE) is a 

reliable and versatile function optimizer that is easy to implement, fast to converge, and does not 

require complex initial settings. DE has been successfully used in a wide range of biological 

optimization problems. The objective of this study was to apply DE in identifying an optimum 

subset of SNP to construct the variance-covariance relationship matrix for a specific trait, followed 

by estimation of the GEBV using BLUP based on this matrix. The performance of this method, 

called Trait Best Linear Unbiased Prediction (TBLUP) was assessed by comparing it with 

GBLUP and a Bayesian method (Bayesian LASSO) on simulated and real data.  

 

MATERIALS AND METHODS 

Data. One real dataset and one simulated dataset were used to assess the proposed method. 

Genotype information on 50K Illumina BeadChip array was available for a total of 1,937 cattle 

from pure-breed Korean Hanwoo with four phenotypic data: back fat (BF), carcass weight (CW) 

eye muscle area (EMA), and marbling score (MS). The simulated dataset contains genotype 

information on 10,000 samples for 40,000 SNP with simulated phenotypes. Genotypes were 

simulated by random sampling from frequencies under Hardy-Weinberg equilibrium (in effect an 

unstructured population). Phenotypes were simulated for different numbers (50, 100, 200 and 500) 

of known QTL. Randomly selected SNP were assigned different effects drawn from a normal 

distribution. Then the phenotypes were created by summing up the SNP effects plus a random 

environmental effect component. Both the real and the simulated datasets were divided into 

discovery and validation populations: 100 samples were randomly selected as validation samples; 

the remainder of the data were used as the discovery population. The 100 random samples selected 

for validation were the same for all scenarios.  

Evolutionary algorithm. An algorithm based on DE was developed to select the best SNP 

subset in order to create the genomic relationship matrix (GRM). To select a SNP subset for the 

GRM, random keys were used. A random key is an evolvable vector of real values (one for each 

SNP) that are sorted by the objective function. The ranking of the key is then used to rank the 

SNP. The idea is that SNP that are better for genomic prediction evolve to higher values in the key 

with the rest to lower values. Once the keys are sorted, they reflect the relative value of a given 

SNP. An additional parameter to be optimized is the number of SNP in the panel – a cutoff value. 

The DE evolves the cutoff value, sorts the SNP based on their key values and uses the top ranked 

ones up to the number defined by the cutoff value. More in-depth details on the algorithm are 

given in (Gondro & Kwan 2012). An objective function was used to calculate the fitness of the 

selected SNP. In the objective function, the discovery population was further divided into two 

subsets: i) a subset population with known phenotype, and ii) another subset population with 

unknown phenotype (phenotypes were set to missing for these samples). A genomic relationship 

matrix was constructed using only the selected SNP for all discovery samples, which was then 

used to predict (by using GBLUP) the phenotype for the samples in the unknown subset 

population. The fitness of a selected SNP subset was defined as the correlation between the actual 

phenotype and the predicted phenotype. For each phenotype the DE evolved for 1,000 generations. 



 

 

RESULTS AND DISCUSSION 

Figure 1 shows a comparison of true genetic value (TGV) vs predicted breeding value for 50 

known QTLs. Table 1 shows the comparison between prediction accuracies for 50, 100, 200 and 

500 known QTLs with the simulated dataset for the different methods of genomic prediction 

(GBLUP, Bayesian LASSO, and our proposed method TBLUP). For the simulated data, the 

proposed method performed better than GBLUP and Bayesian LASSO. For the real dataset, 

heritability of the phenotypes were estimated using the GCTA software (Yang et al. 2011) which 

were 0.54, 0.56, 0.53 and 0.43 for BF, CW, EMA and MS respectively. Table 2 shows the 

genomic prediction accuracies for the validation samples obtained in the real data achieved by the 

three methods. Once again, the proposed method outperformed the two other methods for all four 

phenotypes. 

 
Figure 1. Prediction accuracy comparison (simulated phenotype with 50 known QTL). Blue dots are 

predicted values for the training data while the red dots are predicted values for the validation data. (a) 

Accuracy using all SNP, (b) accuracy using only the true QTL (QTN), (c) accuracy using Bayesian Lasso 

(BLR), and (d) accuracy using DE. 

Table 1. Prediction accuracy comparison with 

the simulated data 

 
True 

QTL 

GBLUP BL* TBLUP 

Accuracy SNP used / 

QTL found 

50 0.40 0.94 0.97 111 / 36 

100 0.32 0.89 0.96 172 / 62 

200 0.33 0.83 0.98 469 / 107 

500 0.20 0.69 0.95 1041 / 186 
 

Table 2. Prediction accuracy comparison 

with the real data 

 
Trait GBLUP TBLUP BL* 

BF 0.370 0.440 0.394 

CW 0.350 0.416 0.263 

EMA 0.355 0.410 0.325 

MS 0.236 0.245 0.233 

*Bayesian LASSO 

 

Improved accuracy of genomic prediction has immediate practical and commercial value for 

agricultural production as it leads to improved accuracy of selection and higher rates of genetic 

gain. GBLUP and various Bayesian methods for genomic prediction have been successfully 

employed in a large number of scenarios. The accuracy of these genomic predictions depends on 



 

 

the genetic architecture of the trait, e.g. number of QTL and their effect sizes (Hayes et al. 2010), 

marker density, linkage disequilibrium (LD) and family relationships (Goddard et al. 2011; Clark 

et al. 2012; Wientjes et al. 2013), population structure (Moghaddar et al. 2014), sample size 

(Goddard 2009) and also the method used to estimate marker effects (Clark et al. 2011). Bayesian 

methods tend to outperform BLUP approaches when the trait is less polygenic (Clark et al. 2011). 

In practice, differences between methods in prediction accuracy are generally quite small. While 

these methods have well characterised statistical properties they are constrained by the underlying 

model assumptions. Given the dimensionality of the solution space, even very small estimates of 

effects in non-informative markers (noise) will, collectively, reduce prediction accuracy. This is an 

increasing problem with the increasing number of genetic variants to predict from. In TBLUP, we 

have attempted to reduce the noise from the system and tried to identify only the SNP that tracked 

relevant regions. In essence, the approach attempts to create a relationship matrix that tracks 

relationships between causal regions while excluding spurious associations and even true genetic 

relatedness that is not relevant to the trait of interest. We suggest that a model free heuristic 

optimisation approach choosing a small subset of best predictors is expected (and shown in the 

present study) to perform better in the context of genomic prediction. 

 

CONCLUSION 

In summary, we have described a novel BLUP method for estimation of breeding values using 

a trait-based relationship matrix, which we called TBLUP. The only difference between 

conventional GBLUP and the proposed TBLUP is that TBLUP focuses more closely on those 

markers that effectively contribute to the variation of the trait of interest and removes some of the 

noise that reduces accuracy of prediction. The preliminary results with real data were promising 

but further sudies (with more real data) are required to properly validate the method and better 

understand its advantages and limitations. In practice, the method can be used to develop smaller 

panel sets and this should reduce genotyping costs which can lead to a wider adoption by industry.  
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