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SUMMARY 

Accurate genetic evaluation relies on measurements, which can be difficult to achieve for some 

economical important traits (hard and /or costly to measure). We developed a strategy that can 

select an optimised subset of animals to phenotype based on pedigree relationship, prior 

information (previously phenotyped animals) and diversity to maximise genetic gain under 

inbreeding and cost constraints.  

We simulated a two-stage two-trait selection scenario for a small population of 10 paternal 

half-sib families of size 10 (pilot study). One trait was phenotyped for all animals (parents and 

selection candidates) and the second trait was phenotyped on only a selected set of  20 selection 

candidates based on a prior decision on phenotyping (stage 1). Phenotyping decisions were made 

either based on maximizing diversity of the set chosen to be phenotyped  (DIVERSITY) or simply 

based on breeding values at stage 1 (MERIT). After phenotyping, the second stage selection of 

animals as parents for the next generation was based on optimum contributions. The DIVERSITY 

strategy was most useful when there was limited prior information about the Mendelian sampling 

term of predicted breeding value. When parents of selection candidates have not been phenotyped, 

DIVERSITY does not provide any advantage over truncation selection (MERIT). However, when 

sires or both parents have been previously phenotyped, DIVERSITY resulted in higher genetic 

gain for similar level of inbreeding. From this study, we conclude that an optimized phenotyping 

strategy can have potential long term benefits in breeding programs but more work is needed to 

investigate under which conditions benefits are largest.    

 

INTRODUCTION 

Trait measurement provides the necessary information to perform accurate genetic evaluation, 

whether it is based on phenotype on the animal itself or on its relatives. However, it can be costly 

and/or difficult to achieve trait measurement for a large number of animals (e.g. carcass traits, 

methane emission). Reducing the number of animals phenotyped is a simple and efficient way to 

cut cost and/or allow economically important traits to be part of the selection criterion, but the 

question is how phenotyping costs can be reduced with minimal impact on genetic gain.   

Various efforts to manage cost of phenotyping have been made over the years. The first 

attempt to manage measurement was made by Robertson (1957) who proposed a theory to 

optimise the family size in a progeny testing breeding program by optimising the product of 

expected selection differential and accuracy. Wade and James (1990) developed a theory to 

manage the cost of testing while limiting a reduction in genetic gain. They mainly optimised the 

proportion of selection candidates to be phenotyped. More recently, Okeno et al. (2014) found that 

using knowledge on previously estimated breeding values was better than phenotyping randomly 

selected animals and that a phenotyping 80% of the animals provides the same gain as when all 

animals were phenotyped. Previous studies were therefore mainly concerned with determining an 

optimal proportion of animals to be phenotyped, but did not give any insight about which 

particular individuals should be measured. 

In a previous study, we developed a phenotyping strategy for a single trait measured on an 

optimised subset of animals with no prior information on the candidates to be considered 

(Massault et al. 2013). A set of individuals was phenotyped that maximised the information and 



thus the accuracy of genetic evaluation. While this strategy proved to be efficient, it does not 

reflect a practical breeding program where multi-trait and multi stage selection is common and 

prior information on candidates exists in the form of estimated breeding values. 

In the current study, we present a phenotyping strategy that uses prior knowledge for the case 

of two-stage two-trait selection. We use a small paternal half-sib population structure and extreme 

parameters to assess the potential usefulness of such a strategy. 

 

MATERIALS AND METHODS 

Population simulation. To explore the efficiency of our selection criterion, we simulated a 

small pedigree of 10 paternal half-sib families, comprising 10 offspring each. We simulated 

genetic and environmental values for 2 traits with both a heritability of 0.3 and a phenotypic 

variation σ
2

P of 100 (e.g. body weight and feed efficiency) with a correlation between traits of rA = 

0.5 and rE = 0.25. Traits 1 and 2 have economic value of 0.01 and 0.1 respectively (the most 

important trait being the one with restricted phenotyping). We therefore have a breeding objective 

G of 0.01 * EBVTrait1 + 0.1 * EBVTrait2 (EBV = Estimated Breeding Value). We used selection in 

stage 1 to determine which selection candidates to phenotype for Trait 2, and offspring were 

selected to become parents at stage 2. All animals were measured for Trait 1 before stage 1 

selection. We had three different scenarios for prior information on Trait 2; NOT2, where no 

parents of selection candidates have been phenotyped for Trait 2; ST2, where sires   have been 

phenotyped for Trait 2 and PT2, where both parents have been phenotyped for Trait 2. These 

scenarios differ in the amount of information known about the between and within family 

components of EBV, and hence the correlation in EBV among relatives We calculated EBVs at 

stage 1 using multi-trait BLUP based on all available information on both traits. EBVs in stage 2 

were calculated using BLUP after phenotyping 20% of selection candidates for Trait 2. We used 

optimum contribution selection at stage 2 (Sonesson and Meuwissen, 2000), where contribution of 

animals to the next generation are optimised and balanced with diversity: 

  
𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  𝒙′𝑮 + 𝜆2𝒙′𝑨𝒙 

 

where G  is a vector of breeding values, x a vector of contribution to the next generation and A the 

numerator relationship matrix. We used 6 different values for 𝜆2 (0, -10,-100, -1000, -9999). We 

then compared the genetic gain (x'G) for the same level of inbreeding (F = x'Ax / 2) between 

different phenotyping strategies.    

Selection criteria for phenotyping (stage 1 selection). We used 2 strategies to select 20% of 

selection candidates to phenotype: DIVERSITY, where animals are selected for phenotyping 

based on merit as well as diversity, and MERIT, where animals are selected simply based on merit 

(highest EBVs). We also simulated an ALL strategy where all selection candidates were 

phenotyped. We propose a selection criterion based on the average (EBVs) of ‘would-be’ 

phenotyped animals and their genetic diversity: 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =  𝒙′𝑮 + 𝜆1𝒙′𝑨𝒙 

 

where G is the vector of expected breeding value of phenotyped animal, x a vector indicating for 

each animal 1/n (number of phenotyped animals) when phenotyped or 0 otherwise and A the 

numerator relationship matrix. The first term reflects the average breeding values of phenotyped 

animals while the second term reflects the diversity between phenotyped animals. We use the 

extreme value of -9999 for 𝜆1 for DIVERSITY. Note that the MERIT scenario where the 

phenotyped set is chosen based on merit alone is equal to setting 𝜆1 to zero, while a scenario 

where diversity was the overriding criterion equal one where 𝜆1 = 9999. The optimality of the 



result will also depend on the importance of genetic diversity at the final selection stage, hence we 

also varied 𝜆2. We simulated 100 replicates. 

Differential algorithm. To determine which subset of animals is best to phenotype, we used a 

differential algorithm (DE, Storn and Price 1997). The DE creates 16 subsets of animals to 

phenotype (solutions). Each subset of phenotyped animals is then evaluated using a selection 

criterion (described above) and the solutions are ranked. The DE creates a challenger for each of 

the 16 solutions by crossing-over and mutating solutions (i.e. a different set of animals to be 

phenotyped). If the challenger performs better, the current solution is discarded and the challenger 

enters the pool for the next generation of solutions.  Subsequently challengers are evaluated with 

the selection criterion over another 50,000 generations. At the end, the DE will have evolved to a 

best (or at least close to best) set animals to phenotype, for a given λ1 value. 

 

RESULTS AND DISCUSSION 

Genetic gain and diversity. Fig. 1 shows the possible selection points at stage 2 (plotting 

genetic gain (x'G) and level of inbreeding F (x'Ax/2)) for the two selection options at stage 1, with 

MERIT (i.e. 𝜆1 = 0) and DIVERSITY(𝜆1 = 9999) for NOT2, ST2 and PT2 scenarios. ALL always 

out-performs the 2 other strategies, as expected, due to the fact that all selection candidates have 

been phenotyped. The ALL strategy gave by far the highest gain under the same level of 

inbreeding at stage 2 selection. The DIVERSITY strategy performed generally better than the 

MERIT strategy. The advantage is not so important in the case of NOT2, but DIVERSITY is 

significantly higher when phenotyping sire (ST2) and both parents (PT2). The performance of 

DIVERSITY increases as the level of information on parents increases.  

Between and within family information. The difference seen between DIVERSITY and 

MERIT can be explained by the additional information given by phenotyping parents of selection 

candidates. In the case of NOT2, where no parents are phenotyped, there is no information other 

than the selection candidates own phenotype for Trait 1. EBVs from sibs are lowly correlated 

(correlation = 0.06, see Stanish and Taylor (1983) for calculation) which reduces the co-selection 

of relatives. Therefore, in this case, a phenotyping strategy that emphasises diversity is not really 

advantageous. MERIT distributed phenotypes to best animals across 8 different families (Fig 2.A) 

while DIVERSITY phenotyped 2 good animals for each family (Fig 2.B) resulting in DIVERSITY 

slightly better than MERIT. On the other hand, when sires have been phenotyped for Trait 2, sibs 

will have a higher correlation (0.40) among their EBVs. Selection on merit would emphasize 

family selection, which becomes restrictive at stage 2 selection (unless 𝜆2 = 0) and the distributing 

phenotypes over more families will allow more emphasis on within family selection at stage 2. 

Fig. 2.C shows that MERIT allocated phenotypes for the 5 best families while Fig 2.D shows that 

DIVERSITY phenotyped 2 good animals per family. This permits a relatively high genetic gain 

and also maximises the diversity and show the benefit of choosing specific individuals to 

phenotype rather than a random proportion to maintain diversity. The same principle applies when 

both parents have been phenotyped and the additional information brought more information on 

the selection candidates itself as each dam has a single progeny.  

Further work. The results showed in this study proved that in selecting animals for 

phenotyping there is an advantage to emphasize diversity of the set to be measured. We concluded 

that phenotyping good animals across a larger number of families resulted in higher genetic gain 

than phenotyping the best animals of few families for same level of inbreeding. An optimal 

solution is likely to be less extreme than the DIVERSITY strategy, hence it is important to find the 

𝜆1 value that optimises the subset of animals to phenotype that allows an optimal solution between 

merit and diversity at the second selection stage. It is also pertinent to explore the benefit of an 

optimal strategy, over a long period of time (e.g. 10 years of selection) and vary the parameter 

values such as trait heritabilities, genetic correlation and economic weights.   



 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Genetic gain (x’G) versus diversity (F, level of inbreeding) plot for 3 different 

measurement scenarios NOT2, ST2 and PT2 with the three phenotyping strategies ALL, 

MERIT and DIVERSITY  

 
  Fig 2. Phenotyped individuals in one replicate with no information on Trait 2 for 

MERIT(A) and DIVERSITY (B) and when sires are phenotyped for Trait 2 for MERIT (C) 

and DIVERSITY (D) . Individuals are classified by EBV at stage 1 and families. 
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