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SUMMARY 

The machine learning method, Random Forests (RF) has been shown to be effective in 

genome-wide association studies (GWAS). However, the presence of population structure (PS), 

e.g. relatedness between individuals, may cause spurious results in a RF analysis. In this study, we 

examined the impact of correcting for PS on the RF analysis of leg defect data from a commercial 

poultry population of 826 chickens genotyped for 44,129 SNP (single nucleotide polymorphism) 

markers. The results show that correcting for PS led to: 1) a significant improvement in the 

estimates of SNP variable importance values; 2) a significant reduction in false positives identified 

in the uncorrected data; and 3) a stronger evidence for a set of SNPs associated with the defective 

phenotype.  

 

INTRODUCTION 

One of the challenges of GWAS is that the number of predictors is larger than the number of 

samples, the so called “large p, small n” problem. During the past decades, a number of parametric 

statistical approaches have been developed for dealing with this issue, for example: Least Absolute 

Shrinkage and Selection Operator (LASSO) (Wu et al. 2009) and two-step Bayesian variable 

selection method (Zhang et al. 2008). Recently non-parametric machine learning methods have 

been shown to be efficient in analysing large genomic data (Szymazak et al. 2009). One of these 

methods is Random Forests (RF, Breiman 2001; Chen and Ishwaran 2012), a nonparametric 

decision tree based ensemble method for classification or regression of multiple predictor variables. 

Our initial preliminary examination found that this method is a powerful tool in pre-screening 

candidate genes in GWAS of sheep and cattle datasets (Li et al. 2014). Despite the advantage of 

RF over single marker GWAS methods in accounting for correlations among SNP variables, the 

existence of population structure (PS) has been shown to cause spurious results in the RF analyses 

(Zhao et al. 2012). In this study, we used a dataset from a commercial poultry population to 

examine the impact of correcting for PS on the RF analysis of a binary trait – leg defect. 

 

MATERIAL AND METHODS 

Data. A total of 826 broiler males from a commercial line of Cobb-Vantress Inc. was 

genotyped for 51,713 SNPs. The dataset comprised animals from 22 generations with various 

proportion of animals that had leg related problems, ranging from 29% to 51%. After quality 

check 7,584 SNPs were removed from the genotype dataset and the remaining 44,129 SNPs were 

used for the RF analyses. The original recording of an animal’s phenotypic leg status was either 

normal, bowed out, bowed in or rotated. We generated a new binary trait, by merging the latter 

three categories into a single category “Leg Defect’. Of the 826 animals, 592 were normal (coded 

“0”) and 234 had leg defects (coded “1”) (Table 1). 

EIGENSTRAT analysis for extracting population structure (PS) information. Unlike a 

linear model that can accommodate PS by fitting a covariance matrix in the model based on 

pedigree or genomic relationships, RF as a permutation-based method cannot directly account for 

such factors. Therefore, prior to a RF analysis, it is necessary to identify and correct any existing 



population stratification. In this study we applied a method similar to that used by Zhao et al. 

(2012) to correct for PS. An EIGENSTRAT analysis (Price et al. 2006) was initially conducted to 

extract all eigenvectors from the SNP data. The linear regression models were fitted to regress the 

first 10 axes of variation (principal components) on: a) individual SNP genotypes, and b) the 

phenotypic trait values, respectively. The residuals from these analyses were combined for the RF 

analyses. All analyses were performed using the R program (version 3.1.1, http://www.r-

project.org/). 

 

Table 1. Trait distribution of leg related defect attributes in 826 roosters. 

 
Trait Number 0 (Normal) 1 (Defect) 

Bowed Out 826 729 97 

Bowed In 826 786 40 

Rotated Leg 826 729 97 

Leg Defect 826 592 234 

 

Random forests (RF). Details of the RF methodology can be found in Breiman (2001). In 

brief, six steps are involved: 1) As the training dataset, select a random subsample of 550 

individuals (or two thirds) with replacement from the available 826 individuals; 2) Select a random 

subset of SNPs (parameter mtry; say 420 out of the original 44,129) to form a decision tree; 3) 

Create a single tree via partitioning of sampled individuals in the subsample (normal versus defect) 

with SNP genotypes (e.g. “AA” versus others); and with the order (or arrangement) of SNP in the 

tree run repeatedly until individuals are perfectly partitioned into normal and defect; 4) Test the 

tree created in Step 3 with the remaining 276 individuals (i.e. validation) to determine the 

prediction error rate of the SNP tree; 5)  Repeat Steps 1 to 4 to develop a large number of forest 

trees (parameter Ntree); 6) Compute SNP variable importance value (VIM) by averaging the 

prediction error values across all forest trees. For a continuous phenotype (e.g. corrected data), 

Step 3 will build a tree that splits the sampled individuals into subsamples with different data value 

ranges. Step 4 will calculate the minimized sum of squared error for each SNP. It is worth noting 

that in a RF analysis, a SNP prediction error value is estimated when the SNP is randomly 

permuted, i.e. excluded from the forest trees. Therefore, the higher the VIM value, the more 

important the SNP is. 

Two crucial parameters impact the outcome of a RF analysis, i.e., the size of forest trees 

(Ntree) and the number of markers at each sampling event (mtry). To determine the minimum 

requirement for these parameters, we examined a range of Ntree and mtry values. These included 

Ntree = 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, or 2000, and mtry = 1, √𝑝, 2 ∗ √𝑝 or 

0.1*p, where p is total number of SNP markers (44,129). Once the minimum parameters were 

determined, these values were used to run the final RF analyses comprised of 100 RF replicates. 

To demonstrate the effect of correcting PS on the analysis, we compared the RF results from the 

corrected data with the uncorrected data. The R program randomForest was used (version 3.1.1). 

 

RESULTS AND DISCUSSION  
RF parameter determination. The average SNP VIM values for different parameter 

combinations of Ntree and mtry are shown in Figure 1. Note that in the context of RF analyses, a 

high value for VIM is favourable. For both uncorrected and corrected data, the average VIM 

reached a stable status with Ntree ≥ 1,000. This suggests that the RF analysis with Ntree ≥ 1,000 

should produce reasonably accurate VIM values. Among the four parameters tested for mtry, 

single marker analysis (mtry =1) gave the lowest estimates for VIM, while the other three 

parameters (√𝑝, 2 ∗ √𝑝  and 0.1*p) produced very similar values.  



 

 
 

Figure 1. Comparison of the mean VIM 

values from different combinations of 

parameters with (top panel) and without 

(bottom panel) correction for population 

structure. 

Figure 2. The proportions of top 5 

marker appearances in 100 RF replicates 

with (red bars) and without (blue bars) 

correction for population structure. 

RF analyses in the corrected and uncorrected datasets. Compared to the uncorrected data 

(Figure 1b), correcting for PS (Figure 1a) clearly resulted in a significant increment in the 

estimated average VIM values (from 0.120 to 0.205). When investigating the top 5 ranking 

markers from each of the 100 RF replicates, a total of 166 and 179 markers were found in the 

uncorrected and corrected data, respectively. The compositions of these marker incidences in both 

datasets are shown in Figure 2. The top markers appearing only once in 100 replicates had the 

highest proportion (54% in the uncorrected versus 64% in the corrected data). The uncorrected 

data tended to have fewer markers (13.85%) with the highest incidence (i.e. captured in 6+ 

replicates) than the corrected data (16.20%). However, the intriguing results were found when 

comparing the distributions of the top 5 marker incidences across the whole genome in both 

datasets (Figure 3). It is very clear that correcting for PS led to a reduction in top ranking SNP 

incidence in a number of genome regions found to be significant in the leg defect analysis of the 

uncorrected dataset. The majority SNPs identified in the uncorrected data were no longer in the top 

ranking markers in the corrected data. Among 166 (uncorrected data) and 179 (corrected data) 

markers, there were 26 in common (shown by overlapping regions in Figure 3) and 11 of them had 

a reduced incidence in the corrected data. In contrast, there was a set of 12 common markers 

closely linked (near the right hand side of the genome), after correcting for PS, the association 

signal became much stronger. 

 

a) Corrected  

b) Uncorrected  



 
Figure 3. Distribution of top 5 ranking marker incidences across genome for corrected (blue) 

and uncorrected data (red). 

Population stratification or admixture is known to cause different allele or genotype 

frequencies in subpopulations and that in turn can lead to detection of spurious SNP associations 

in GWAS (Zhao et al. 2012). RF has its advantage over single marker GWAS methods in handling 

high dimensional genomic data (Chen and Ishwaran 2012), but it has a limited power in dealing 

with a confounding effect of PS on both genotypes and a phenotype. The results here demonstrate 

the importance of correcting for population structure prior to RF analysis to minimize false 

positives. Since the “true” SNPs are unknown, these results are of very limited use for the purpose 

of method validation. There is a need in future to conduct a systematic evaluation of the method 

with large simulation datasets.  

  

CONCLUSIONS 

Correcting for population structure prior to RF analysis can improve the accuracy of SNP 

variable importance values and avoid spurious association results. Since RF is a non-parametric 

permutation based method, a large number of RF replicates is required to get reliable inference of 

the markers associated with a phenotype.   
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