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SUMMARY 

Mutations can affect phenotypes by changing the amino acid sequence in a protein or by 

changing the expression of a gene. The gene expression in a particular tissue can be measured 

using mRNA sequencing and counting the number of mRNA copies of the gene. The aim of our 

research was to find mutations which affect expression of genes in cis. We detected the mutations 

that are associated with the expression of each gene in muscle (45 Angus bulls) and liver (38 

Angus bulls) by correlating the mRNA count with the alleles carried at single nucleotide 

polymorphisms (SNPs) within 50kb of the genes that were tested. Furthermore, the SNPs and 

genes with at least one SNP significantly associated with one or more traits (p < 0.001) were found 

by genome-wide association studies (GWAS) in a beef cattle dataset including 6,114 genotyped 

animals with 20 traits recorded. We compared the results to find the SNPs significantly associated 

with gene expression (p < 0.001) and also with the variation in phenotype. The SNPs which were 

significantly associated with gene expression (p < 0.001) were more likely to be significant in 

GWAS for concentration of Insulin like growth factor1(IGF-1), residual feed intake (RFI) and in a 

multi-trait significance test. 

 

INTRODUCTION 

The mutations underlying variation in complex traits are generally identified using genotypes 

and phenotypes in GWAS (Goddard and Hayes 2009). However, most of the SNPs found in 

GWAS are not located in the coding regions of the genome and  so may influence the variation of 

the traits by changing the expression of genes. These polymorphic sites are likely to affect the 

expression of the copy of the gene on the same chromosome and are called cis-expression 

quantitative trait loci (cis-eQTL) (Arnold et al. 2012).  

The next generation sequencing (NGS) technology which is used for sequencing DNA is also 

applicable for sequencing mRNA. In genome-wide transcriptome studies using the mRNA 

sequencing (RNA-seq) data, the abundance of mRNA for each gene can be measured by counting 

the number of sequence reads aligned to the gene in the reference genome.  

Although GWAS have found many associations between SNPs and traits, it has proved 

difficult to identify the causal mutation or the gene(s) whose structure or expression they affect. 

On the other hand, a cis-eQTL affects the expression of a specified gene, so if a cis-eQTL is the 

same as a QTL for a traditional phenotype, this defines the gene through which the QTL probably 

acts. In addition, the cis-eQTL may help to identify the causal mutation for both itself and the 

traditional QTL. However, the RNA-seq data is more expensive to obtain than most traditional 

phenotypes and therefore the number of animals in whole transcriptome studies is limited. Also, 

the results depend on the tissue which was sampled for mRNA and so, even if a QTL is identical 

with a cis-eQTL, this may not be discovered if the wrong tissue is sampled. 

The aim of our research was to find if SNPs which were significantly associated with gene 

expression (cis-eQTL) were more likely to be significant in GWAS of traditional traits. 



MATERIALS AND METHODS 

Animals. The animals used for RNA-seq were young Angus bulls from lines of cattle 

divergently selected for residual feed intake (RFI) from the selection lines established in 1993 at 

the Agricultural Research Centre, Trangie, NSW, Australia (Arthur et al. 2001). The bulls with 

liver (L-bulls) and muscle (M-bulls) samples were from the lines after approximately 3 and 4 

generations of selection, respectively. 

RNA-seq. The transcriptome data was for 43 muscle and 38 liver samples. The extracted RNA 

from the sampled tissues (Chen et al. 2011) were sequenced with a HiSeq 2000 (Illumina Inc) 

after mRNA enrichment, by the modified protocol of Illumina sample preparation for RNA-seq. 

All of the raw reads were passed through quality control filters and trimming the ends of reads 

based on Phred quality scores (minimum quality of each nucleotide base=15, minimum average 

quality of the read after trimming=20, minimum read length after trimming=50 and maximum 

consecutive nucleotide bases with poor quality=3). 

Genotypes. For 43 M-bulls we had 800K SNP chip and whole genome sequence data (WGS)  

with average coverage 6.7 fold from the 1000 bull genomes project (Daetwyler et al. 2014). The 

L-bulls had 800K SNP genotypes imputed from 50K (Illumina BovineSNP50K chip) using 

BEAGLE (Browning and Browning 2009) and then imputed to WGS using FImpute (Sargolzaei et 

al. 2014). We also used FImpute to rephase the genotypes of M and L bulls. 

Alignment. The bovine genome assembly UMD3.1 was modified using the WGS data to 

produce a genome sequence for each individual bull. For each bull the RNA-seq data were aligned 

to its customised reference genome using TopHat2 (Kim et al. 2013). 

Abundance of genes. For each gene in the reference genome, the mapped mRNA was counted 

using HTSeq python package (Anders et al. 2015). The number of sequence reads for all genes in 

each animal were normalised with a weighted trimmed mean of the log expression ratios using 

edgeR package in R (Robinson and Oshlack 2010). Finally, the normalised gene counts were log 

transformed to have normal distributions across animals. 

eQTL mapping. The genes expressed in more than 25% of L-bulls and M-bulls were used to 

find eQTL. The association between the gene counts and the SNPs in WGS data within 50kb of 

the gene was calculated with ASReml for muscle and liver samples separately. 

GWAS. A GWAS was carried out  for 20 traits (including meat quality and production traits) 

using up to 6114 cattle and 729,068 HD SNPs. As well as individual traits, a multi-trait test was 

performed as described by Bolormaa et al (2014), except that only Bos taurus cattle were included. 

The SNPs were from the Illumina high density panel and were either genotyped or imputed from 

lower density. Only SNPs within 50 kb of a gene were used so that the same SNPs were tested in 

the GWAS as were tested for cis-eQTL.  

The SNPs were classified as significant or not for association with gene expression (p < 0.001) 

and for association with one of the traits (p < 0.001) and we performed a chi-squared test of the 

hypothesis that SNPs affecting gene expression are more likely to be significant in GWAS. We 

also classified genes as either containing a significant cis-eQTL or not and as having a SNP within 

50kb associated with a trait or not, and performed a chi-square test to test the hypothesis that genes 

containing an eQTL were also likely to be near a SNP associated with a traditional phenotype.  

 

RESULTS AND DISCUSSION 

RNAseq. In the muscle samples, there were on average about 8.5×10
6
 (100%) RNA-seq raw 

reads per animal, 6.5×10
6
 (75%) reads that passed the quality control filters, 5.9×10

6
 (70%) that 

aligned to the reference genome and 5.5×10
6
 (65%) that were mapped uniquely. In the liver 

samples, there were on average roughly 7.6×10
6
 (100%) raw reads per animal, 5.5×10

6
 (72%) 

reads that passed the quality control filters, 4.6×10
6
 (60%) that aligned to the genome and 4.5×10

6
 

(52%) that were mapped uniquely. The percentage of reads mapped to the reference genome in L-



bulls is less than M-bulls probably because we used imputed genotypes to enhance the L-bulls 

reference genomes. In all chromosomes (and autosomes), 12,278 (11,842) in muscle and 12,233 

(11,821) genes in liver were expressed (about 50% of the known genes were expressed in muscle 

and liver).  

cis-eQTL.. In the muscle samples, each of the expressed 12,278 genes were tested for cis-

eQTL using SNPs within 50kb of the gene. Among the HD SNPs, there were 240,818 SNPs that 

were tested for association with expression of one or more genes. 5,042 of these SNPs were 

significantly (p < 0.001) associated with expression of at least one gene in muscle. Similarly, of 

227,488 SNPs tested, 2,420 were associated (p < 0.001) with expression of at least one gene in 

liver (Table 1).  

Trait QTL. Table 1 presents results for two individual traits (blood concentration of IGF1 and 

residual feed intake) and the multi-trait test. For instance, 1,047 SNPs, out of 240,818 tested, were 

significantly associated with RFI (The number of SNPs tested varies slightly between M and L 

bulls and by trait because some SNPs had to be dropped from some analyses because they had a 

MAF below 1% in that dataset and only SNPs near genes expressed in that tissue were used). 

Overlap between trait QTL and eQTL. There were only 3 SNP in common between the 386 

SNPs that were associated with blood concentration of IGF-1 and the 5,041 associated with 

expression of at least one gene in muscle. This is not more than expected by chance (p=0.07) 

(Table 1). However, as shown in Table 1, there was more overlap between SNPs associated with 

traits and gene expression than expected by chance (p < 0.05) in 3 of the 6 tests. For instance, there 

were 169 SNPs associated with both the multi-trait test and with gene expression in muscle and 

this was far more than expected by chance (p=8.2×10
-9

).  

Where a SNP is significantly associated with a trait and with expression of a gene, the 

expression of this gene may also be affecting the trait. Genes identified in this way  (and the 

number of significant SNPs associated with their expression) for the cis-eQTL in muscle and  

affecting IGF1 are: PPM1H (2), MTHFD1 (1). For muscle cis-eQTL and RFI: POLR2I (33), 

PTPRR (5), ATP5E (4), SSFA2 (2), CARD6 (2), THAP8 (1), DNER (1), ATPIF1 (1) and in cis-

eQTL in liver and IGF-1: DAB1 (2), EVC (1), RFI: MVK (9), GSK3A (4), LOXL3 (1), DPYD (1), 

DNER (1), and 2 SNPs were in an uncharacterized gene. For example, GSK3A ( glycogen synthase 

kinase 3 alpha) was reported to regulate glycogen metabolism in liver (Ali et al. 2001). So it 

seems reasonable that this gene can affect feed efficiency and RFI. The number of SNPs found 

significant in eQTL mapping and in the multi-trait GWAS was 169 in muscle and 48 in liver and 

these SNPs were spread across 51 genes in muscle and 25 in liver. 

Table 1 also contains the corresponding numbers based on testing genes instead of SNPs. 4,044 

genes had a cis-eQTL, 303 genes had a SNP within 50kb associated with IGF-1 and 125 genes had 

both which was significantly more than expected by chance (p=0.002). Note that the SNPs 

associated with IGF-1 are not necessarily the same as the SNPs associated with gene expression, 

they are just near the same gene. In addition, the eQTL analysis used whole genome sequence 

whereas the QTL analysis used HD SNPs. 

In all 6 tests, there were more genes that contained both a QTL and an eQTL than expected by 

chance (Table 1). Examples of genes that contain a QTL and an eQTL are: in muscle, SH3-domain 

GRB2-like (endophilin)-interacting protein 1 (SGIP1) gene was previously reported to have a role 

in regulating food intake, fat mass, energy balance and energy homeostasis. Its roles in regulation 

of feeding behaviour affects any process that activates or increases the frequency, rate or extent of 

feeding behaviour (Trevaskis et al. 2005; Cummings et al. 2012) and therefore might affect RFI. 

Bos taurus bone morphogenetic protein 2 (BMP2) is one of the genes found to significantly 

associated with IGF-1 concentration and differentially expressed in muscle. BMPs, are also called 

growth and differentiation factors have negative regulation of the IGF receptor signalling pathway 

and affect any process that stops, prevents, or reduces the frequency, rate or extent of IGF receptor 



signalling (Kronenberg 2003). 

We conclude that traditional QTL are sometimes in fact cis-eQTL. Therefore mapping cis-

eQTL will help us to identify causal variants for conventional phenotypes and the genes through 

which these variants act. A benefit of eQTL is that the gene whose expression they affect is known 

so, if the QTL is an eQTL, this identifies the gene through which the QTL acts. cis-eQTL often 

explain a large proportion of the variance in expression and so there is some power to identify the 

causal variant even in small datasets. In addition, as information builds up about regulatory regions 

in livestock genomes, we will have functional information to help us identify sites that might 

change the expression of the target gene.  

 

Table 1. SNPs and genes association with traits variation and gene expression in muscle and 

liver 
 

Tissue / 

Trait 

Total SNPs (genes) Number of SNPs (genes) significantly 

associated with: 

 

QTL eQTL QTL & eQTL X2 p-value for  

SNPs (genes) 

Muscle      

IGF-1  240,586 (12,278) 386 (303) 5,041 (4,044) 3 (125) 0.070 (0.002) 

RFI 240,818 (12,278) 1,047 (502) 5,042 (4,044) 49 (204) 4.6×10-09 (1.8×10-04) 

Multi-Trait 239,726 (11,842) 5,240 (3,102) 5,030 (3,923) 169 (1,099) 8.2×10-09 (0.002) 

      

Liver      

IGF-1  227,473 (12,233) 366 (287) 2,420 (2,246) 3 (85) 0.649 (6.2×10-07) 

RFI 227,488 (12,233) 985 (497) 2,420 (2,246) 18 (113) 0.019 (0.010) 

Multi-Trait 226,564 (11,821) 4,907 (2,973) 2,413 (2,202) 48 (630) 0.550 (3.3×10-05) 
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