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SUMMARY 

 Bos indicus content is a key predictor of beef eating quality under Meat Standards Australia 

(MSA)  quality grading scheme. Initially a phenotypic estimate of the proportion of B. indicus was 

used in the MSA model although more recently this has been estimated from hump height and 

carcass weight. The Admixture software was used to develop an estimate of B. indicus content 

using genomic information. It was demonstrated that B. indicus content could be accurately 

estimated from SNP genotype data (BB_genotype). This knowledge was used to examine the 

accuracy of estimating B. indicus content from hump height (BB_hump). The estimation of B. 

indicus content using BB_hump was found to provide a moderate accuracy of estimating B. 

indicus percentage.  However, this difference in accuracy  did not translate into substantial 

differences in the prediction of eating quality under the MSA model.   

 

INTRODUCTION 

The Meat Standards Australia (MSA) beef grading model uses commercial inputs at grading to 

predict beef eating quality. The MSA prediction of eating quality is based on a series of equations 

for individual cuts for up to five different cooking methods.  The MSA model inputs include the 

following traits, estimated Bos indicus content (estBI%), whether the animal was treated with 

hormonal growth promotants (HGP), sex (female or steer), carcass characteristics (carcass 

suspension method, carcass weight, marbling and ossification scores, ribfat, and ultimate pH), and 

value adding effects (cooking method and days aged). One of the key animal predictors in the 

MSA model is estBI% (Thompson 2002, Watson et al. 2008). The impact of estBI% on eating 

quality was estimated by Watson et al. (2008) to be between three and 13 MQ4 score units for the 

different cuts in the carcase. For the MSA model development, estBI% was derived largely from 

pedigreed animals, or from herds of known B. indicus content. 

When the MSA model was initially implemented nationally in 2000, estBI% was determined 

from the national vendor declaration (NVD) in conjunction with a physical inspection of the cattle 

by a trained MSA grader.  Mixed lots of cattle were graded to the highest estBI% in the lot. This 

often necessitated redrafting mixed lots into like groups at the abattoir, which generally increased 

stress on the animals prior to slaughter. Hump height adjusted for carcass weight was proposed as 

an alternative method of assessing estBI% (Sherbeck et al. 1996) and this was included in the 

MSA model. Over time, the usage of hump height adjusted for carcass weight has increased until it 

is now preferred to NVDs for assessing estBI% at grading (MSA, unpublished data). 

Given that the regression coefficients for the effect of estBI% on eating quality were largely 

generated from animals of known genotype it was timely to confirm the accuracy of using hump 

height adjusted for carcass weight compared with using animal phenotype to predict eating quality. 

A series of experiments performed by CRC and MSA provided the opportunity to explore 

relationships between estBI% estimated from hump and carcass weight (BB_Hump), genomics 



(BB_Genotype) and BI% from known phenotype. It was also possible to compare the relative 

accuracy of BB_Hump and BB_Genotype as predictors of eating quality in the MSA model. 

MATERIALS AND METHODS 

     A series of datasets were used to investigate different objectives. The first objective was to 

develop a estimate of B. indicus content from genomic SNP panels and then test this estimate 

using independent data. The second objective was to evaluate the relationship between estimated 

B. indicus content (estBI%) predicted from hump height and carcass weight (BB_Hump) and 

estBI% from genomic information (BB_Genotype). Finally, the accuracy of using either 

BB_Hump, or BB_Genotype along with other MSA input traits to predict eating quality, was 

assessed. 

Development of BB_Genotype estimate. To develop an estimate of B. indicus content 

(BB_genotype) and evaluate its efficacy for prediction of BI content, the CRC III genotype and 

phenotype databases were used.  To build the estimate, a training set of 5,650 animals and a 

validation set of 9,734 animals were selected from the total data set. Within breeds, animals were 

randomly assigned to training and validation groups. The diversity of breeds in the CRC III 

database meant there was a wide range of breeds and crossbred animals used to test the accuracy 

and precision of the Bos indicus content estimates. A subset of 5,817 markers that were common 

across all Illumina 10k, HD50k and 700k genotyping platforms were selected in the prediction 

equation for BB_Genotype. 

Admixture software was used to develop estimates of BB_Genotype from SNP data 

(Alexander et al. 2009, Alexander and Lange 2011). The animals selected as training animals were 

coded as either Bos taurus (BT) or Bos indicus (BI) and the supervised option was used. The 

animals set coded as BT included Angus (n=2,000), Murray Grey (n=200), Shorthorn (n=500), 

Hereford (n=500), Limousin (n=50) and Charolais (n=400). There were 2,000 Brahmans used in 

the analysis as the BI reference. This program has been used previously (Porto Neto et al. 2014) to 

estimate breed composition in beef cattle.  

The relationship between BB_Hump and BB_Genotype. This relationship was assessed using 

three data sets. Firstly, the CRC II data which comprised 1,012 animals that had been slaughtered 

and MSA graded. Secondly, the long distance transport (LDT) data set (Polkinghorne et al. 2013) 

which comprised 343 cattle, and lastly, 50 animals from a Rigor Temperature Experiment (RTE) 

(J Thompson, unpublished data). A simple linear regression was used to estimate the relationship 

between BB_Hump and BB_Genotype. 

Prediction of eating quality using either BB_Hump or BB_Genotype in the MSA model. The 

LDT and RTE data sets had consumer eating quality on striploin samples. For both data sets 

regression models to predict eating quality (MQ4 score), included MSA input traits (carcass 

weight, marbling and ossification scores, ribfat and ultimate pH) along with terms for either 

BB_Hump or BB_Genotype.  A multiple regression was used to assess the relationship between 

BB_Hump and BB_Genotype following adjustment for components routinely considered in the 

MSA eating quality prediction model. 

 

RESULTS AND DISCUSSION 

The genomic estimate of Brahman content using SNP data was shown to be closely related to 

Brahman content from pedigree (R
2
=98%). This was slightly higher than the estimate of Frkonja et 

al. (2012) who was able to explain approximately 94% of the breed composition.  However, in the 

earlier study, the breeds comprised Simmental and Red Holstein Friesian which were much less 

divergent than in the current data set. In addition, the study by Frkonja et al. used a much smaller 

training data set (495 cattle).  Likewise, Kuehn et al. (2011) was able to explain between 77% and 

92% of the variation in breed composition within Bos taurus beef breeds.  



 

Table 1. The coefficient of determination (R
2
), residual standard deviation (RSD), intercept 

and slope for the relationship between BB_Genotype and BB_Hump for three data sets. 

Data set Range 

BB_Genotype 

R
2
 RSD Intercept Slope 

CRC II 40-100% 0.44 25.3 0.08 (2.07) 0.84 (0.02) 

RTE 0-100 0.70 17.8 22.2 (3.06) 1.43 (0.14) 

LDT 0-100 0.40 15.5 44.8 (1.21) 0.56 (0.04) 

 

To examine the relationship between hump height and B. indicus content three data sets were 

used (Table 1). Within all three data sets there was a positive relationship between BB_Genotype 

and BB_Hump, the coefficient of determination ranging from 40 to 70%. The residual standard 

deviation indicated that the error in predicting BB_Genotype from BB_Hump was similar for the 

two RTE and LDT datasets, but larger for the CRC II dataset. The slopes of the different 

regressions indicated that BB_Genotype was under or overestimated in the different data sets. 

Thus, there may be scope to adjust the equation used to predict BB% from BB_Hump in order to 

reduce bias. 

 

Table 2. F ratios for input traits used to predict palatability (MQ4) using data from the rigor 

temperature (RTE) and the long distance transport (LDT) experiments.  

MSA traits F Ratio 

 
RTE 

 
LDT 

 
Model 1 

 
Model 2 

 
Model 1 

 
Model 2 

BB_Genotype 18.52 
 

- 
 

15.33 
 

- 

BB_Hump - 
 

12.62 
 

- 
 

10.04 

Steak Position 7.19 
 

7.09 
 

13.17 
 

16.05 

Sex 1.49 
 

1.89 
 

- 
 

- 

Hang 26.32 
 

26.13 
 

- 
 

- 

Hang*position 1.74 
 

1.72 
 

- 
 

- 

HSCW 0.51 
 

0.65 
 

2.68 
 

2.4 

Ribfat 0.73 
 

0.57 
 

2.28 
 

1.76 

Ossification 2.11 
 

2.11 
 

1.92 
 

2.49 

Marbling 26.64 
 

24.91 
 

23.62 
 

27.04 

Ultimate pH 3.22 
 

2.8 
 

1.08 
 

0.88 

Days aged 15.57 
 

16.48 
 

- 
 

- 

HGP - 
 

- 
 

0.18 
 

0.6 

Residual standard deviation 10.46 
 

10.55 
 

10.6 
 

10.65 

R
2
 39.38 

 
38.16 

 
24.50 

 
23.22 

Model 1 includes BB_Genotype and Model 2 includes BB_Hump. Degrees of freedom (DF) for 

Rigor temperature 1,281 for all terms except position (2,281), hang (2,281), position* hang 

(4281)  and days aged (3281)  

DF for LDT was 1312 for all terms except position (2,212) 



When adjusted for other terms in the MSA model the regression coefficients for the two 

estimates of B. indicus content differed slightly. When B. indicus content was estimated by 

BB_Hump the regression coefficient indicated that an increase in B. indicus content from 0 to 

100% resulted in a decrease of 14 MQ4 units in palatability.  By contrast when BB_Genotype was 

used the decrease was only 9 MQ4 units. 

Using two MSA datasets the accuracy of predicting eating quality (MQ4) was similar 

regardless of whether it was estimated using BB_Genotype, or BB_Hump (Table 2). The use in 

isolation of BB_Genotype or BB_Hump had a large effect on the total F ratio (data not shown). 

However, there was little difference in the overall percentage of variation explained when using 

either BB_Hump or BB_Genotype to adjust for BB% under the MSA model. The coefficient of 

determination dropped by approximately 1% in both cases. In both experiments, the F ratios were 

slightly higher when estBI% was predicted from BB_Genotype compared with using BB_Hump. 

As the variation explained using all the MSA inputs did not change substantially, the variation that 

should have been due to BB% under the BB_Hump term was partitioned across other terms in the 

model. In the case of LDT this variation was picked up by marbling score possibly due to the 

correlation between marbling score and BB% in this data set. In RTE it was less clear which 

individual terms accounted for the difference in using BB_Genotype or BB_Hump.  

 

 

IMPLICATIONS 
Using data from a number of MSA experiments, BB_Hump predicted BB_Genotype with 

reasonable accuracy, although in the different data sets there was a tendency to either over or 

underestimate BB_Genotype. This could be corrected by adjusting the formula used to convert 

hump height to BB_hump, or by using a genomic estimate of B. indicus content. When used in a 

regression model with other MSA inputs, both BB_Hump and BB_Genotype were similar in their 

ability to predict consumer eating quality. 
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