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SUMMARY 

To detect how much genetic variance is accounted for by different genomic regions one first 

step is to work at the chromosomal level. We used a half sib data structure for two growth traits in 

sheep as a potentially powerful design to partition the genetic variance across chromosomes. 

Records for post weaning weight (PW) and scan C site back fat (CF) were used from 5,239 merino 

sheep. The model of analysis accounted for population structure by fitting genetic group effects as 

well as the numerator relationship matrix (A) or the first five principal components (PC). Different 

approximations were compared fitting the genomic relationship matrix (G) based on 48,599 

markers, or on single nucleotide polymorphisms of an individual chromosome. The correlation 

between chromosome length (L) and variance explained per chromosome (𝜎𝑔𝑖
2 ) was 0.53 and 0.70 

for PW and CF correspondingly, however significant differences in (𝜎𝑔𝑖
2 /L) were found between 

chromosomes, ranging from 0% to 17.5%. Some chromosomes explained more variance and 

covariance than expected, under the assumption that it is proportional to the chromosome size; 

suggesting that some chromosomes clearly harbor more QTL. Some chromosomes show a 

covariance of opposite sign indicating they could be used in selection to ‘break’ an unfavourable 

correlation (e.g. chromosome 8). These results represent a powerful source of information for 

genomic selection. 

 

INTRODUCTION 

The tracking of chromosome segments through a pedigree is becoming more feasible due to 

the availability of abundant genomic information. However with the ever increasing density of 

genetic markers, there is also an increasing ambition to work out which variants actually are 

responsible for the observed quantitative genetic variation.  

One first step to detect how much genetic variance is accounted for by different genomic 

regions is to work at the chromosomal level. Previous studies found a linear relationship between 

chromosome length and variance explained for human traits (Yang et al. 2010 and Visscher et al. 

2007), production and fitness related traits in dairy cattle (Jensen et al. 2012) and production traits 

in sheep (Daetwyler et al. 2012).  

The advantage of data on sheep populations is that the data structure is usually based on 

relatively large half sib families. This provides a powerful design for determining segregation 

based on linkage. The design is not suitable for LD mapping; hence the accuracy of mapping QTL 

positions would be low. However, the latter is less relevant for determining the amount of genetic 

variance explained per chromosome.    

The objectives of this study were to estimate the genetic variance and covariance for two 

growth traits in sheep, determine the amount of additive genetic variance explained by each 

chromosome and to investigate the best model to correct for population and pedigree structure.  

 

MATERIAL AND METHODS 

Data for this study was obtained from the Information Nucleus program of the CRC for Sheep 

Industry Innovation. Details on this program and its design are described by van der Werf et al. 



(2010). The data set comprised a total of 2,455 purebred merino lambs with phenotypes for two 

growth traits (post weaning weight: PW and scanned C site back fat: CF), pedigree and genotype 

data. The animals were descended from 139 sires and the associated pedigree file contained 10,559 

animal identities from over 22 generations. The pedigree information was used to compute a 

numerator relationships matrix (A) for the animals with phenotypic records using the R package 

‘pedigree’ (Coster 2012). Genotypic information consisted of SNP marker genotypes obtained 

using the OvineSNP50 BeadChip assay (Illumina, San Diego, USA). After quality control 

(Moghaddar et al. 2014) and imputing missing genotypes with Beagle 3.2 (Browning and 

Browning 2007), genotype information on 48,599 SNP was used to derive a genomic relationships 

matrix (G), scaling G to be analogous to A following VanRaden (2008). 

The general model used to analyse the data was: 𝑦 = 𝑋𝑏 + 𝑍𝑎𝑎 + 𝑍𝑚𝑚 + 𝑍𝑞𝑄𝑞 + 𝑒, where 

vector b included fixed effects of sex of lamb (ram: 1 or ewe: 2), birth type/rearing type (single: 

1/1, twins: 2/2 or triplets: 3/3 and their combinations), management group, age of dam and 

weaning age; a is the random additive genetic effect of the lamb, m is the maternal permanent 

environmental effect and q is a genetic group effect. The genetic group consisted of merino strain 

(depending on the type of wool) where we regressed on strain proportion. Different models were 

explored to be able to partition the additive genetic variance into components that can be explained 

by markers while correcting for population structure, fitting into the model A and G individually 

(model 1 and 2 correspondingly) or simultaneously (model 3), together with genetic groups 

(merino strain) derived from a deep pedigree analysis, or fitting the first five principal components 

(PC) as a covariate (model 4). To decompose the variance components into 26 chromosomes, 

individual Gi were built based on marker information on the i
th

 chromosome and fitted 

simultaneously in the model (model 5), together with A (model 6) and with PC as a covariate 

(model 7). A bivariate analysis was also performed using the estimated variance components per 

trait resulting from the univariate analysis to define the starting values of the (co)variance matrices 

structures. The variance components for the first 4 models and the bivariate analysis were analysed 

using ASReml 3.0 software (Gilmour et al., 2009). Models 5 to 7 were analysed using GCTA 

software (Yang et al., 2011b). 

 

RESULTS AND DISCUSSION 

When pedigree (A) and marker based (G) relationship matrices were fitted individually we 

found that for PW SNPs capture additive genetic relationships among individuals and also effects 

of QTL (Table 1), G explaining more variation (36.80 %) than A (30.81%); however in the case of 

CF the results were opposite, A explained slightly more variation (25%) than G (22.61%). 

Nevertheless for both traits the log likelihood was higher when fitting only G in the model 

compared to fitting only A. Results from model 3, in which A and G were fitted simultaneously 

showed that most of the variance was partitioned toward G agreeing with previous reports (Haile-

Mariam et al. 2013 and Jensen et al. 2012). 

Model 4 was investigated as an alternative solution to correct for population structure avoiding 

co-linearity between the variance components. Results showed that variance explained by G after 

accounting for population structure using the first five PC was equal to 6.69 for PW and 0.09 for 

CF and the phenotypic variance was similar to the one calculated with the rest of the models. 

Genetic variance explained per chromosome using models 5 to 7 showed that the variance 

explained by each Gi varied and was somewhat related to the chromosome length (Figure 1) 

agreeing with Daetwyler et al. (2012). The correlation between variance explained and 

chromosome length was weaker for PW (0.55) than for CF (0.70) and marked differences in 

genomic variance explained were found for some chromosomes. For example, chromosome 6 

explaining the higher amount of genomic variance for PW (13.3 to 13.7% depending on the 

model), followed by chromosome 1 (8.6 to 8.8%), 2 (6.4 to 8.2%), 10 (7.6 to 8.9%), 16 (5.8 to 



6.4%) and chromosome 26 is estimated to contribute 0% variance. 

 

Table 1. Variance components estimates using different mixed linear models for post 

weaning weight (PW) and scanned C site back fat (CF). 

 

PW 𝜎𝑎
2 𝜎𝑔

2 𝜎𝑚
2  𝜎𝑒

2 LogL 

Model 1 (A) 6.74   2.21  12.92  -9485.64 

Model 2 (G)   7.75  1.77  11.54  -9393.23 

Model 3 (A+G) 1.33  7.74  1.44  10.88  -9393.19 

Model 4 (G+PC)  6.69 2.38  12.12  -10358.2 

CF      

Model 1 (A) 0.12     0.36  -1293.60 

Model 2 (G)   0.11   0.37  -1279.29 

Model 3 (A+G) 0.03  0.10   0.35  -1279.09 

Model 4 (G+PC)  0.09   0.43  -1197.29 

 
The difference between variance explained per chromosome and the expected variance 

explained, under the assumption that the genetic variance is proportional to the size of the 

chromosome (Daetwyler et al., 2012), was also calculated (Figure 1) showing that some 

chromosomes explain more variance than expected; reflecting the relative QTL density on each 

chromosome, e.g. chromosome 6 for both traits with and extra variance of 9.1% for PW and 7.1% 

for CF; and others contribute with 0% of the variance explained, e.g. chromosomes 8, 9, 14, 19 

and 25 for CF. 

 

a)  

b)  

Figure 1. Genomic proportion of variance relative to the total size of the genome calculated 

per chromosome for post weaning weight (a) and scanned C site back fat (b) using models 5, 

6 and 7. The line indicates the expected proportion of genomic variance explained per 

chromosome based on its size.  



A bivariate model was used to estimate covariances and correlations per chromosome between 

growth traits in sheep. We found that 6 chromosomes have large covariance effects (Figure 2) and 

5 have a negative covariance, e.g. chromosome 8, revealing that a small number of chromosomes 

appeared to ‘break’ the positive genetic correlation (overall genetic correlation ~ 0.5). 

 

 
Figure 2. Covariance between post weaning weight (PW) and scanned C site back fat (CF) in 

merino lambs from bivariate analysis per chromosome. 
  

The main conclusions from the present study are that the inclusion of PC in the model corrects 

for population structure avoiding co-linearity between the variance components. While the 

additive genetic variance explained per chromosome is partially related to chromosome length, 

considerable differences between chromosomes in the amount of additive genetic variance 

explained were found and a small number of chromosomes appeared to ‘break’ the positive 

genetic correlation.  

The approach presented in our study provides relevant information to the understanding of the 

genetic underlying complex trait variation and represents a powerful source of information for 

genomic selection. 
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