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SUMMARY 

It has been suggested that traits associated with fitness, such as fertility, may have 

proportionately more genetic variation arising from non-additive effects than traits with higher 

heritability, such as milk yield. Here, we performed a large genome scan with 408,255 single 

nucleotide polymorphism (SNP) markers to identify chromosomal regions associated with 

dominance and epistatic (pairwise additive × additive) variability in milk yield and fertility 

(measured by calving interval), using 7,055 genotyped and phenotyped Holstein cows. The results 

were subsequently replicated in an independent set of 3,795 Jersey cows. We identified genome 

regions with replicated dominance effects for milk yield on Bos taurus autosomes (BTA) 2, 3, 5, 

26 and 27 whereas SNPs with replicated dominance effects for fertility were found on BTA 1, 2, 3, 

7, 23, 25 and 28. A number of significant epistatic effects for milk yield on BTA 14 were found 

across breeds. However, these were likely to be associated with the mutation in the diacylglycerol 

O-acyltransferase 1 (DGAT1) gene, given that the associations were no longer significant when 

the full additive effect of the DGAT1 mutation was included in the epistatic model. The results of 

our study suggest that individual non-additive effects make a small contribution to the genetic 

variation of milk yield and fertility. 

 

INTRODUCTION 

Female fertility is of great interest to the dairy industry because impaired reproductive ability 

can reduce the profitability of a dairy herd, through increased expense of additional inseminations, 

veterinary treatments and replacement cows. Selection to improve milk production traits in 

Holstein and Jersey cattle populations has led to a decline in fertility traits in the last few decades 

due to unfavourable genetic correlations between fertility and milk production (Berry et al. 2014). 

Many countries have now included fertility in their national breeding goals. However fertility 

related traits usually have low heritability estimates and genetic improvement through traditional 

breeding programs is slow, although substantial genetic variation exists (Khatkar et al. 2014). For 

traits such as fitness traits, where heritability estimates are low the non-additive part of genetic 

variation could be used to genetically improve the trait of interest. Non-additive genetic variation 

is the result of allele by allele interactions and involves intra-locus (dominance) and inter-locus 

(epistasis) interactions. 

An increasing availability of genotypes coupled with phenotypes has provided a new 

opportunity for estimation of non-additive genetic effects. Genome-wide association studies can be 

used to estimate both the additive and non-additive effects of genetic markers, but most published 

GWAS for dairy cattle to date have focused on additive effects of genes while non-additive 

interactions are generally neglected. 

The objective of this study was to detect chromosomal regions with non-additive effects for 

calving interval (CI) and milk yield (MY) using a Holstein cow discovery population. We then 

attempted to validate these associations in an independent Jersey population of cows. 

 



 

 

MATERIALS AND METHODS 

Data. Animals were genotyped with Illumina BovineSNP50 v2 BeadChip (Illumina, San 

Diego, CA, USA) and their 50K SNP data were imputed to the high density (HD) 800k panel 

using Beagle 3 (Browning and Browning 2009). Standard quality control checks were applied on 

genotypic data prior to the imputation step. Accurate estimation of dominance effects of the SNPs 

requires enough observations in all three classes of SNP genotypes. Therefore, a further 223,748 

SNPs were removed from HD SNP panel due to a genotype class with frequency < 0.01 in both 

Holstein or Jersey animals. The final set comprised 408,255 SNPs. 

Phenotypic data included 23,198 and 11,091 milk yield and calving interval records 

respectively for 7,055 Holstein and 3,795 Jersey cows (some cows had records across multiple 

lactations). These records were pre-corrected for herd-year-season, age at calving, parity and 

month of calving using a fixed model on full national data set of phenotypes. Residuals from this 

model were then used as the response variable in GWAS analyses for the genotyped animals. 

 

Statistical model. The mixed linear model used was: 

𝐲 = 𝟏𝐧𝜇 + 𝐗𝐛 + 𝐙𝐮 + 𝐖𝐩𝐞 + 𝐞 

where y is a vector of phenotypes (CI or MY), 1n is a incidence vector of ones, µ is the population 

mean term, b is the vector containing relevant additive or dominance marker effects as specified 

below, u contains polygenic effects assumed to be distributed as  𝐮~N(0, 𝐀𝜎𝑔
2) with A being the 

pedigree based numerator relationship matrix, pe is the vector of random permanent 

environmental effects with 𝐩𝐞~N(0, 𝐈𝜎𝑝𝑒
2 ) and e is a vector of random residual deviates distributed 

as  𝐞~N(0, 𝐈𝜎𝑒
2). Then X is a design matrix allocating records to marker effects (dominance or 

additive by additive) and Z and W are incidence matrices for the random effects. σ
2
g, σ

2
pe and σ

2
e 

are polygenic additive, permanent environmental and residual variances, respectively. 

The original marker covariates (0, 1 or 2) were corrected for allele frequencies (Vitezica et al. 

2013) to build X, so that 𝑥𝑖𝑗(𝑎) = {-2p, (q-p) or 2q} for additive effects of aa, Aa and AA 

genotypes, respectively, with p and q being the frequencies of alleles A and a at marker j in the 

population. For dominance effects, aa, Aa and AA genotypes were coded as 𝑥𝑖𝑗(𝑑) ={-2p
2
, 2pq and 

-2q
2
}. Then, the contents of Xb varied with the type of the genetic effect being tested. For 

dominance, 𝐗𝐛 = {𝑥𝑖𝑗(𝑎)𝑎𝑗 + 𝑥𝑖𝑗(𝑑)𝑑𝑗}, where 𝑑𝑗 is the dominance effect of marker j. In the 

epistasis model, 𝐗𝐛 = {𝑥𝑖𝑗(𝑎)𝑎𝑗 + 𝑥𝑖𝑘(𝑎)𝑎𝑘 + 𝑥𝑖𝑗𝑘(𝑒)𝑎𝑗𝑘}, where 𝑥𝑖𝑗𝑘(𝑒)is the qualification for 

nested interaction effects involving markers j and k, 𝑎𝑘 is the additive effect for the k marker and 

𝑎𝑗𝑘 is the pairwise additive by additive epistatic marker effect between markers j and k. 

 

Validation. To confirm if significant SNPs were consistent between breeds, results from the larger 

Holstein population (discovery set) were validated in the Jersey breed in two different ways. First, 

if a significant SNP was found in the discovery process, we examined whether it was also 

significant in the validation population. Second, for each significant SNP in the discovery 

population, we searched for significant SNPs in the validation population within the region 500 kb 

downstream and upstream of the identified SNP. 

The false discovery rate was calculated following the approach proposed by Bolormaa et al. 

2010 as: %𝐹𝐷𝑅 = (𝑃(1 − 𝑆/𝑇)/((𝑆/𝑇)(1 − 𝑃))) × 100  
where P is the P-value threshold in F-test, S is the number of significant SNPs according to this 

threshold and T is the total number of tests. 

For dominance models, all of the markers in the final HD panel were used. To reduce the 

dimension of SNP combinations tested in the epistatic models, only significant SNPs determined 

using the P-value of the F-test of their additive effects in the Holstein discovery set were included. 

 



 

 

RESULTS AND DISCUSSION 
Dominance. The false discovery rate (FDR) for dominance effects were high, at 100% for both 

traits (Table 1) meaning that the number of significant SNPs in Holsteins is smaller than expected 

by chance. Forty SNPs were significant (P< 0.0001) in the Holstein discovery population for MY. 

Only 1 of these was also significant (P < 0.01) in Jersey cows, but with different signs observed in 

the discovery and validation analyses and with a FDR of 39 % (Table 1). For CI, 36 SNPs were 

found to have significant (P < 0.0001) dominance associations in the Holstein discovery set (Table 

1). Of these, 3 (1 with same direction) SNPs were validated in individual validation (FDR = 11 %). 

The segment validation approach was more successful; the number of validated SNPs for MY 

increased to 21 (P < 0.01) with a FDR in the validation population being equal to 1%; 10 SNPs 

were validated for CI (FDR = 3 %) within discrete regions. The validated SNPs with significant 

dominance effects on MY and CI were detected on 5 (BTA 2, 3, 5, 26 and 27) and 7 (BTA 1, 2, 3, 

7, 23, 25 and 28) chromosomes, respectively (Figure 1). 

 

Table 1. P-value thresholds and the number of SNPs with significant dominance effects and 

corresponding false discovery rates (FDR) for milk yield (MY) and calving interval (CI) 
 

  Discovery  Individual validation  Segment validation 

Trait  P Holstein FDR (%)  P Jersey FDR (%) Same Dir. 

 

P Jersey FDR (%) 

MY  0.0001 40 102  0.01 1 39 0 0.01 21 1 

CI  0.0001 36 113  0.01 3 11 1 0.01 10 3 
1Number of same direction SNP effects in discovery and validation populations 

 

 
Figure 1. Manhattan plot of dominance SNP effects for fertility (top) and milk yield (bottom) 

with chromosome number on horizontal axis and –log10(P-value) on vertical axis. 

 

Epistatic interactions. A larger number of significant pairwise interactions were found for 

milk yield compared to fertility (Table 2). For MY there were 3,700 significant pairwise 

interactions in the discovery population of Holstein cows at the threshold of P < 10
-7

. Of which 

165 were validated (P < 1×10
-5

) in the Jersey population (Table 2). The number of validated 

additive × additive effects that were in the same direction in both Holstein and Jersey data was 163 

out of 165. In all epistasis analyses of MY, FDRs were calculated to be very close to zero. Since 

all of the SNPs that had validated interactions for MY were located at the beginning of BTA 14 

and near the DGAT1 gene, we suspected that these interactions may have been due to the DGAT1 

mutation effect. Therefore, the epistatic model was extended to include a SNP in the DGAT1 gene 

itself as a fixed effect to see if any of the interactions remained significant. The absence of 

significant interactions in this region after including the DGAT1 effect in the model suggests that 

the identified significant pairwise interactions identified were picking up the DGAT1 effect by 

creating haplotype like combinations. That is, the linkage disequilibrium of SNP allele 



 

 

combinations with the DGAT1 mutation was higher than for the individual SNP, rather than a true 

epistatic interaction. 

Five additive × additive interactions were found significant (P < 0.0001) for CI in Holsteins 

with a FDR of 18%. However, none of these was validated (P < 0.01) in the Jersey population. 

 

Table 2. P-value thresholds, number of significant pairwise additive × additive interactions 

and calculated false discovery rates (FDR) for milk yield (MY) and calving interval (CI) 

 
    Discovery  Validation  

Trait  No. of interactions  P Holstein FDR (%)  P Jersey FDR (%) Same Dir.1 

 MY  255,255  10-7 3700 0  10-5 165 0 163 

CI  9,180  10-4 5 18  0.01 0 NA NA 
1Number of same direction SNP effects in discovery and validation populations 

 

Implications. One critical parameter determining the power of a GWAS is the amount of LD 

between the observed SNP and the unobserved causal variant. The success of a GWAS in 

identifying QTLs with additive effects is controlled by r
2
 (r is the correlation between genetic 

marker and causative mutation) while detection of dominance or pairwise additive by additive 

effects depends on r
4
. This indicates a much higher reliance on LD in searching for non-additive 

effects compared to additive effects, if LD between the markers and QTL is incomplete (Wei et al. 

2014). This, and possibly the relatively small size of individual dominance and epistatic effects, 

was reflected in results of this study in which a larger number of additive markers were identified 

than the markers with dominance and epistasis effects for both traits under investigation. 

The standard in reporting GWAS results is validation and before genotype-phenotype 

relationships can be used in selection decisions, they should be replicated in an independent 

population to confirm generalized effects in multiple populations. Validation of GWAS results 

across breeds can refine QTL regions to narrower intervals and is powerful in identifying 

positional candidate genes. This is because the extent of LD across cattle breeds is limited in 

contrast to within a breed, where considerable LD can be maintained in intervals up to 1 Mbp as a 

result of a relatively small effective population size. We validated a lower number of non-additive 

genetic associations than additive effects such that very few dominance effects for MY and CI 

were confirmed and no epistasis effect was common across Holstein and Jersey cows for CI. This 

trend is in agreement with the fact that the higher dependence on LD in searching for dominance 

and epistatic effects compared to additive effects significantly decreases the chance of validating 

associations in independent populations for non-additive effects of the markers (Wei et al. 2014). 

 

CONCLUSION 
We identified and validated a small number of SNPs with suggested dominance effects on MY 

and CI in Australian Holstein and Jersey cows. Given our results, identifying non-additive gene 

actions using single SNP regression in a GWAS setting will require very large datasets to capture 

the likely very small individual non-additive genetic effects. 
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