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SUMMARY 

We predict genomic selection accuracy from a heterogeneous reference population that contains 

close relatives, herd- or flock mates and individuals from the wider population, using an established 

theory. The various sources of information were modeled as different and independent reference 

populations with different effective sizes. We show that information on close relatives can have a 

substantial effect on genomic prediction accuracy. We also show the increase of the genomic 

prediction accuracy to be less reliant on higher marker density or total reference population size when 

there are more closely related individuals to predict from. Conversely, the value of close relatives is 

smaller when the total reference population size is larger. Our modelling is useful to assess the value of 

a population reference versus a breeder’s own reference, based on own animals genotyped.  

 

INTRODUCTION 

Genomic selection requires a reference population of individuals having information on both 

genotype and phenotype. The accuracy of genomic prediction depends on various parameters, 

including size of the reference sample, its genetic structure and the genetic architecture of the trait of 

interest. An important parameter is the effective size of the population. The effective population size is 

a predictor of the effective number of chromosome segments that are represented in the population. 

Theoretical predictions have usually considered a homogeneous population. However, in most 

practical applications, the reference population used for genomic predictions possibly consists of many 

subpopulations, e.g. breeds, lines or strains within a breed and part of the reference population maybe 

be directly related via pedigree to the animals to be predicted. Hence, reference populations consist of 

individuals that vary in relatedness to each other and to the target animals to predict. The distinction 

could be relevant for a breeder with genotyped individuals to assess the importance of own 

measurement versus that in the wider population.  

Clark et al. (2012) showed that genomic predictions are more accurate if the genomic relationship 

between the target animal and the reference population is higher. Habier et al (2013) distinguished 

between three types of information in genomic prediction; linkage disequilibrium, additive-genetic 

relationships and co-segregation of QTL predicted from marker genotypes within a pedigree. They 

argued that it would be useful to understand how these sources contribute to the accuracy of genomic 

predictions, especially when designing reference populations for breeding programs. They show these 

contributions via simulated examples but did not provide simple predictions for them. Hayes et al. 

(2009) also considered the influence of relationships on genomic prediction. They followed the same 

approach as the general theory, i.e. by considering the number of independently segregating 

chromosome segments within families.  They showed the accuracy of genomic prediction from 

varying sizes of full- and half- sib families, but did not consider the information from combined 

sources. We propose a simple approach to assess the importance of various sources of information 

used for genomic prediction in animal breeding. 



MATERIALS AND METHODS 

Predicting genomic selection accuracy. The accuracy of genomic breeding values (GBV) based 

on DNA marker genotypes can be predicted from theory (e.g. Daetwyler et al., 2008; Goddard, 2009; 

Goddard et al., 2011), assuming that prediction is based on a reference population of animals with 

phenotypes and genotypes for the same DNA markers, and these markers are linked to quantitative 

trait loci (QTL). Based on the infinitesimal model, the accuracy depends on i) the proportion of genetic 

variance at QTL captured by markers and ii) the accuracy of estimating marker effects. The proportion 

of genetic variance at QTL captured by markers (b) depends on LD between markers and QTL, which 

in turn depends on the number of markers (M) and the number of ‘effective chromosome segments’ 

(Me);  b = M/(Me + M).  Prediction of Me is not easy and various approximations have been presented 

by largely the same authors (Goddard, 2009; Hayes et al., 2009, Goddard et al., 2011, Meuwissen et 

al., 2013). We will use Me = 2NELk/ln(2NE) (Meuwissen et al., 2013), where  NE = effective 

population size;  L = average chromosome length;  k = number of chromosomes. The accuracy of 

estimating marker effects depends on the captured genetic variance as a proportion of the total 

variance (b.h
2
), the number of (unrelated) animals observed in the reference population (T), and Me. 

The accuracy is the variance of the estimated (random) marker effects (q) as a proportion of the 

variation in true marker effects: V(�̂�)/V(q). This term is estimated as /(1+), where  = Th
2
b/Me.  

Reliability of GBV is then r
2 
= b.V(�̂�)/V(q) and the accuracy is the square root of this value. 

 

Effective population size in a heterogeneous population. A critical parameter in the accuracy of 

genomic prediction is the effective population size (NE). It is not easy to define ‘population’ in many 

practical cases and it is not possible to represent a reference population by a single value for NE. We 

propose a very simple model relevant for breeding programs for beef cattle or sheep. For the prediction 

of an individual within a herd/flock we consider three sources of information based on animals that are 

measured and genotyped 1) N1 individuals from a certain breed but not closely related to the target 

animal, 2) N2 herd/flock mates of the target animal and 3) N3 close relatives of the target animal. We 

will refer to these sources of information as breed, flock and relatives, respectively. This is, of course, 

a simplified representation of heterogeneity, but a useful start to consider the contribution of each to 

overall prediction accuracy. We consider these three subsets as populations that differ in relatedness to 

the target animal as well as to each other, to be modeled as three different populations with different 

effective size, indicated as NE1, NE2, and NE3, and a different number of chromosome segments, i.e. 

differing also in the size of the segments shared amongst each other and with the target animal. Each 

of these sources provides an estimation of breeding value and the reliability (r
2
i) of each GBVi can be 

calculated as above. The three information sources are combined as GBV = GBVi by using 

cov(GBVi, GBVj) = r
2

i. r
2

j.VA, and cov(GBVi, a) = r
2
i.VA, where a is the true breeding value and VA is 

the additive genetic variance. The accuracy of the GBV can then be calculated using standard selection 

index theory. 

 

Study Design. For each of the three resources contributing to genomic prediction we varied values 

for NEi and Ni and marker density. We compared accuracy of GBV from just breed with predictions 

that included also information from flock and relatives. The total number in the reference population 

was kept equal between such comparisons. We evaluated the contribution of each information source 

as ‘value of variate’, defined as the relative loss in accuracy if that resource was removed. The trait 

heritability was 0.25.  



RESULTS AND DISCUSSION 

In a base scenario we assumed a population with a large diversity, NE1 = 1000, e.g. similar to the 

Merino population. Subsets of flock mates and relatives were represented by N2 = 400 and N3 = 50, 

with effective size NE2 = 50 and NE3 = 8. This scenario represents a lower value for the breed 

information source due to its large diversity, and a large number of individuals in the flock and 

relatives information sources. Results are shown in Figure 1, showing that the flock and relatives 

resources contribute substantially to the prediction accuracy, especially when the accuracy of the breed 

Fig. 1. Accuracy of GBV depending on total reference population size for low (Nmarkers=12k, 

left) and high (Nmarkers = 500k, right) marker density, comparing ‘with’ (continuous line) and 

‘without’ (dashed line) information on flock and relatives. 

 

resource is low. This is the case with low N1 and with low marker density coupled with high 

population diversity (NE1). The influence of flock and relatives decreases with large N1 and also with 

higher marker density. Further comparisons are summarized in Table 1. The results show that for 

populations with lower NE1 the contribution of flock and relatives declines rapidly. If the contribution 

of flock and relatives is smaller due to less own data being available (lower values for N2 and N3) then 

their influence decreases accordingly, but it can still be substantial for small N1
 
and high NE1. 

 

Overall the results illustrate that the GBV accuracy is likely higher than predicted based on the size 

in the reference population and the effective population size of the breed, due to information from 

relatives and more closely related individuals in the flock or herd. The effect will be larger when the 

information from the wider breed resource is of lower value, e.g. for smaller reference populations, or 

breeds with higher diversity. The effect of marker density is more notable if the breed diversity is high 

(high NE1). The information from the own flock genotyping and recording can contribute substantially, 

and even if the numbers are relatively low (low N2 and N3) if the breed resource is small (e.g. N1 = 

2000). The assumption about NE2 and NE3 have some effect on the observed differences, e.g. when NE3 

increases from 8 to 16 in the first case, the accuracy increase (diff) reduced from 95% to 87% and 

when NE2 increases from 50 to 100, the increase is further reduced to 64%.  

 

The purpose of this study was to use a simple model to estimate of the importance of information 

on closer relatives in genomic prediction. This is relevant for breeders that have developed their own 

reference population. The value of this own reference can be substantial, unless a fairly large breed 

reference is available, and the value would be higher for more diverse breeds such a Merino.      



Table 1 Value of the various information sources, accuracy of GBV with and without the flock 

and relatives information sources
2
 and the relative accuracy difference (diff).  

   Value of information source
1 

N1   breed flock relatives  GBV_acc_with GBV_acc_wo     diff
3 

 
NE1=1000,  N2=400, N3=50 

2,000   16% 52% 21%  0.428  0.220              95% 

5,000   31% 39% 15%  0.471  0.318              48% 

10,000   45% 26% 10%  0.528  0.420              26% 

       
NE1=1000,  N2=100, N3=10 

2,000   48% 36% 12%  0.279  0.205              36% 

5,000   68% 19% 6%  0.357  0.309              15% 

10,000   79% 11% 4%  0.445  0.414  7% 

       
NE1=200, N2=400, N3=50 

2,000   45% 26% 10%  0.528  0.448             18% 

5,000   62% 12% 5%  0.640  0.599  7% 

10,000   72% 5% 2%  0.739  0.718  3% 
1 Percent decrease in accuracy if this information source was removed. Note that these do typically not add up to 

100%. 
2 NE2 = 50, NE3 = 8, Marker density = 50k. 
3 Difference between prediction accuracy with and without information from flock and relatives 

 

CONCLUSIONS 

This work shows a simple approach for modeling genomic prediction in a heterogeneous reference 

population by considering several subpopulations that differ in effective size. The model allows 

quantification of the importance of the own flock or herd information versus the wider breed 

information used for genomic prediction. We show that as a result of using some information from 

relatives, the increase of prediction accuracy with increasing the size of the wider reference population, 

or increasing marker density, maybe lower than expected. The validity of the approach needs to be 

tested with simulated as well as real data.  
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