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Archival remote sensing imagery were used to reconstruct seagrass coverage and turbidity time-series for 

Western Port, Victoria. This enables investigation of the extent to which seagrass coverage and bay turbidity are, 
and have been, sensitive to river discharge and suspended solids or climatic fluctuations. Furthermore, the use of 
remote sensing to derive physical parameters that can be used to calibrate a hydrodynamic model is a new and 
novel approach, compared with the more traditional methods of model calibration using in-situ measurements. 

Based on the relationship between the satellite derived reflectance and the inherent optical properties of the 
water column, semi-empirical algorithms can be derived for these optically complex waters to provide estimates 
of  substrate composition and water quality information. The application of these methods for multispectral 
satellite imagery analysis has several limitations, however, the benefit of the hyperspectral models have been 
found to produce better results compared with alternative methods. Multi-temporal data from the Australian 
Geoscience Data Cube (AGDC) when combined with the optical modelling approach, enables consistent large 
scale spatio-temporal analysis of seagrass extent and of coastal water quality. These analyses are used in support 
of analysis of turbidity sources, hydrodynamic modelling and seagrass modelling activities, which are reported 
in separate abstracts. 
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1 INTRODUCTION  
Satellite imagery is a valuable data type for monitoring coastal resources over large areas, as the spatial coverage 
provides contextual information often unavailable through ground based survey. Landsat satellite imagery 
provides medium resolution (spatial resolution of 25 meters) that is on an environmentally relevant spatial scale 
but requires a standardised approach in which to monitor temporal change [1]. Previous assessments have often 
suffered from sensor resolution limitations [2], but even so, they can be sufficient to highlight distributional 
ecosystem differences between successive image acquisitions.  

A physics-based inversion model was developed for hyper-spectral data [3] to retrieve bathymetry, substrate 
composition and water quality information [(concentrations of chlorophyll-a (CHL), non-algal particulates 
(NAP) and colour dissolved organic matter (CDOM)]. Based on optical modeling, this approach requires an 
understanding of the interactions between light and the atmosphere, the water surface, water column constituents 
and the substratum, if optically shallow [4].   

Retrieving information from satellite data on water quality and benthic substrata from (often multispectral) 
satellite data through the inversion of constituents and substratum is constrained by the spectral and spatial 
characteristics of the satellite imagery. The complexity of coastal environments where water constituents, 
benthic substrate and depth are all varying, means more spectral bands are required to sufficiently resolve details 
and to separate benthic habitat features.  

2  DATA AND METHODS 

2.1 Study Site 

Western Port, in southern Victoria, Australia (area 270 km2) is a relatively shallow embayment with important 
saltmarsh, mangrove and seagrass communities. Previous studies have shown extensive loss of seagrass 
coverage between the 1970s and 2000s [5]. Since this time, there have been previous studies showing 
progressive loss in some areas, while re-establishment in others. However, areas such as the upper north and 
eastern regions of the bay are chronically turbid and the intertidal substrate remains non-vegetated.  



2.2 Satellite Data 

It was proposed in this research to apply the optical modelling approach on archival Landsat data. Landsat 8, 
launched in 2013 provides this research with current imagery for assessment while Landsat 5 and 7 data provides 
archival imagery from 1987. Suitable Landsat images were acquired from both the USGS archive and the 
Australian Geoscience DataCube (AGDC) free of charge. Landsat 8 has an increased data capture capacity and 
an improved signal to noise performance compared to the older Landsat satellites. 

2.3 Model for Substrate Retrieval 

A physics-based model offers an objective and repeatable algorithm for retrieval of substratum-type information 
from remote sensing data. An inversion algorithm by [6,4,7] was developed for remote sensing data using an 
analytical model and optimisation routine. The algorithm expresses the subsurface remote-sensing reflectance ��� 
as a function of a set of environmental variables, that is, measureable water properties which can be estimated 
from remotely sensed data.  When the modelled remote sensing reflectance ���

��������  is compared to the 
measured satellite remote sensing reflectance   , the set of environmental variables that minimises 
the difference between the model and input reflectance provides the solution. This approach provides a physics-
based analytical solution for retrieving environmental variables independently on a pixel-by-pixel basis. In [8] 
and [9], [10] and [4], the [6] algorithm was enhanced and evolved into SAMBUCA, a semi-analytical model for 
bathymetry un-mixing and concentration assessment. SAMBUCA was now able to retrieve simultaneous outputs 
of:  1) the water’s optically active constituent concentrations (chlorophyll-a, Coloured dissolved organic matter 
and non-algal particulate), 2) the percentage substratum cover type (either as homogeneous or mixtures of two 
substrate types)  and 3) metrics to assess the reliability of the retrieval. 

2.4 Parameterisation 

The parameterization of SAMBUCA relies on the optical properties of the water body and substratum derived 
from field measurements. Inversion methods analysed in [4] showed increased accuracy of retrievals were 
obtained with improved optical parameterisation of the study site. An accurate parameterisation provides 
boundary conditions for the retrieval of the environmental variables. Field campaign measurements ensure the 
SAMBUCA parameterisation is as robust and comprehensive as possible, but when unavailable, the input (such 
as constituent concentrations, or absorption or backscattering information) is derived from archival field 
campaign measurements from similar environments. Once parameterised, SAMBUCA was run to estimate the 
concentrations of optically active constituents in the water column (chlorophyll-a, CDOM and NAP), water 
column depth, and benthic substratum composition on a pixel-by-pixel basis. Spectral reflectance measurements 
of a local seagrass and brown macroalgae show that the spectra are generally quite distinct, mainly due to a 
varying pigment composition as seen in the peaks and troughs in reflectance. Although these species may be 
spectrally distinct in hyperspectral imagery, the broad spectral bands of the multispectral Landsat indicate that 
species separability would be challenging.  

3 RESULTS AND KEY FINDINGS 

3.1 Physics-based retrieval of Landsat data 

SAMBUCA was sensitive to the initial boundary conditions, that is, the starting value and range of the variables. 
A series of SAMBUCA tests were run using as input the two substrate (dark mud and bright sand) spectral 
libraries. The SAMBUCA-derived bathymetry estimates were compared at selected sites in Westernport where 
depth measurements obtained from prior studies were used. An accurate bathymetry layer would further 
constrain the model and could be integrated at a later stage. The best performing set of variables used in the 
parameterisation were used to constrain another SAMBUCA run using a three substrate library using a brown 
macroalgae, seagrass and sand spectra as possible substrates. 
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Seven Landsat images (acquired 
between 1985-2014), were 
selected to apply SAMBUCA and 
derive substrate maps. Figure 1, 
shows a subset of the derived 
substrate map for a 10 April 1999 
Landsat 5 image. In Figure 1, the 
green class represents data 
retrieved as brown macroalgae and 
the red class represents seagrass. 
Each pixel of the Landsat imagery 
covers 625m2, therefore each pixel 
contains a ‘mixture’ of the 
reflectance of all the substrates 
within that 625m2. Together with 
this spatial heterogeneity, the 
broad bands of the Landsat sensor 
are probably unable to distinguish 
between the algae and seagrass 
spectra, therefore in (Figure 1, the 
red and green classes are labelled 
vegetated substrate rather than 
seagrass or macroalgae.  

 
 
 

Figure 1: The Landsat 5 image of Westernport Bay from 10 April 1999 with the retrieved seagrass and algae 
classes overlaid in red and green, respectively. The field data are overlaid as dark red dots. 

Accuracy of the Westernport SAMBUCA substrate retrievals (Figure 1) were assessed using field 
observation data collected between 26 July 1999 and 19 April 2000. As previously discussed, due to Landsat’s 
limited spectral resolution, the ability to separate species was restricted, therefore the SAMBUCA substrate 
retrievals were assessed after combining the seagrass and macroalgae classes with an overall accuracy of 71%. 

3.2 Time Series analysis of satellite-derived water quality information 

Analysis of remotely sensed data time series has the potential to augment the sparse in-situ total suspended 
matter (TSM) measurement records to provide a fuller understanding of the temporal dynamics of sediment 
transport within Westernport. Multi-decadal time series of Landsat data can be acquired from the AGDC [11]. 
Retrieving the concentration of TSM from Landsat data requires an understanding of its effects on the spectral 

signal measured by the sensor. An 
analytical relationship between TSM 
and the average of the reflectance for 
Landsat green and red bands was 
derived for several locations where 
field data was available. This algorithm 
was developed by [12] for highly turbid 
lakes, where the green and red Landsat 
bands were identified as most suitable 
for estimating variations in TSM 
(equation 1), but noting the errors 
increase with clearer waters, [12]. Both 
The TSM and SAMBUCA estimations 
appear to describe similar temporal 
behaviour with SAMBUCA’s retrievals 
underestimating the TSM estimates. 
Equation 1: 

 TSM index = mean(green + red)  
Figure 2: A pixel drill of Landsat data obtained from the AGDC for the field site WPB3. The TSM index (green 
triangles) was derived using from [12] and for the same pixels the SAMBUCA NAP (non algal particulates) 
retrieval (blue crosses) for data from 1988 until 2014. 



3.3 Summary 

A map of vegetated substrate (seagrass and macroalgae) has been retrieved from the Landsat data using the 
SAMBUCA model objectively applied. Results indicate that the spatial patterns in the SAMBUCA predictions 
of vegetated substrate correlate with historical field mapping.  The Landsat sensor appears to lack sufficient 
spectral sensitivity to distinguish between the spectral classes of seagrass and algae, unless it is in areas of 
significant homogeneity that encompass more than one Landsat pixel (625m2). 

Significant portions of the Westernport Landsat scenes were covered with optically deep water, that is, 
where the substrate reflectance cannot be determined either from the confounding effects of the water column 
depth or because of the water clarity. The SAMBUCA retrieval appears to adequately map the turbidity within 
each scene, when compared with the TSM index of the AGDC pixel drill, which enables the relative impact on 
bay turbidity of catchment sediment inputs and re-suspension to be investigated.   
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