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SUMMARY 

As genomic data used for prediction of complex traits rapidly expand in size, the importance of 

computational efficiency of genomic prediction algorithms becomes paramount.  In this paper we 

describe an expectation-maximisation (EM) algorithm for genomic prediction (OptBR) with the 

speed-up scheme that is up to 30 times faster than MCMC implementations. The algorithm is 

flexible for joint analysis of data from different sources, as it includes weightings for the accuracy 

of phenotype, and can accommodate effects of factors such as breed, age, sex and additional 

covariates.  A further advantage of the method is that QTL mapping is performed simultaneously 

with genomic prediction.     

 

INTRODUCTION 

Genomic predictions are increasingly used to identify breeding individuals in livestock and 

crop improvement programs. The prediction equation to calculate genomic predictions is derived 

from a reference population genotyped for thousands of single nucleotide polymorphisms (SNPs), 

and with phenotypes for the target trait (Meuwissen et al. 2001), or through an alternative 

implementation where genomic relationships derived from the SNP are used to predict breeding 

values for selection candidates (e.g. VanRaden 2008).  Across many species, a key finding is that 

reference populations must be very large to achieve high accuracies of genomic prediction. One 

way to increase the size of the reference population is to combine information across populations 

from the same species. For example in dairy and beef cattle small to moderate increases in 

prediction accuracy have been reported by using a multi-breed reference population (Lund et al. 

2014; Kemper et al. 2015; Bolormaa et al. 2013). Another finding from these studies is that the 

increase in accuracy of prediction from combining information across populations can depend on 

the method of prediction.     

For multi-breed predictions, methods which assume a priori that SNP effects are all non-zero 

and small, and all from the same normal distribution (SNP-BLUP and GBLUP) do not perform as 

well as methods that assume a priori that some SNP may have zero, small or moderate to large 

effects (BayesB, or BayesR) (Lund et al. 2014; Kemper et al. 2015).  Compared to BLUP 

methods, these models use priors which assume a large proportion of SNP have effects close to 

zero, or actually zero, while a small proportion of SNP have moderate to large effects. This is 

important not only to improve genomic predictions across breeds, but also to improve the 

precision of QTL mapping using such methods. While the Bayesian methods are very attractive, 

the major difficulty with these methods is long computation time, which becomes intractable with 

very large data sets. The long computational time arises because Bayesian methods are typically 

implemented using MCMC. To speed up Bayesian methods, several heuristic convergence 

methods have been proposed e.g. fastBayesB (Meuwissen et al. 2009) or fastBayesA (Sun et al. 

2012). All of these methods reported reduced computation time but in some cases the prediction 

accuracy was reduced compared to their MCMC counterparts. 



 

 

Our aim was to develop a computationally efficient algorithm (OptBR for Optimized BayesR) 

for simultaneous multi-breed prediction and QTL mapping. OptBR implements an EM algorithm 

on the hierarchical prior assumption for SNP effects and other parameters from BayesR (Erbe et 

al. 2012).  Also, OptBR retains the advantage of Predicted Error Variance (PEV) correction of 

emBayesR (Wang et al. 2015) to improve the accuracy. OptBR has four improvements compared 

with emBayesR which allow it to be applied to very large data sets, which may encompass 

multiple populations. These advantages include 1) weighting of phenotypes to allow for different 

errors in measurement across populations; 2) multi-breeds are accounted for by introducing fixed 

effects into the prediction models; 3) a polygenic term to capture variation not explained by the 

SNP, and 4) a speed-up scheme to make it 30 times faster than BayesR implemented with MCMC.  

 

MATERIALS AND METHODS 

Genotypes and phenotypes. OptBR was implemented on 630K SNPs panels (with total 

632,003 SNPs), that was imputed from 777K and 54K Illumina Bovine SNP arrays. Phenotypes 

for milk yield, protein yield, fat% and fertility were daughter trait deviations (DTD) for bulls, and 

trait deviations (TD) for cows. For genomic prediction, the data was separated into references set 

and validation sets. The reference data included 16,214 Holstein and Jersey bulls and cows, while 

the validation set included 251 Holstein bulls (bulls born after 2007), or a third breed, 114 

Australian Red bulls (Australian reds bulls were never included in the reference set).   

Data Model. The statistical model is 𝐲 = 𝐗𝛃 + 𝐙g + 𝐖𝐯 + 𝐞 where 𝛃 is a vector of fixed 

effects including breed, 𝐠 is a vector of the SNP effects, 𝐯 is a vector of polygenic effects ~ 

𝑁(0, 𝐀σv
2) , 𝐞 is a vector of residuals ~ 𝑁(0, Eσe

2) where E is diagonal and accounts for error in 

TD and DTD, with σe
2 the error variance. Three design matrices 𝐗, 𝐙 and 𝐖 allocate phenotype (𝐲) 

to the vectors 𝛃, 𝐠, and 𝐯 separately. The SNP effects are assumed to be drawn from a mixture of 

normal distributions with zero mean and variance either 0 𝑜𝑟 0.0001 ∗ σg
2 𝑜𝑟 0.001 ∗ σg

2 𝑜𝑟 0.01 ∗

σg
2 with probability 𝐏𝐫𝒌 (𝑘 = 1 ⋯ 4) drawn from a Dirichlet distribution with parameters (1,1,1,1).  

Expectation maximisation algorithm. To implement the EM algorithm we rewrite the 

statistical model for the i
th

 SNP as 𝐲 = 𝐗𝛃 + 𝐙𝐢gi + 𝐮𝟏 + 𝐖𝐯 + 𝐞 where 𝐮𝟏 = 𝒁𝒈 − 𝐙𝐢gi, that is 

𝐮𝟏 is the sum of all SNP effects other than SNP i. This form of the model allows us to treat 𝐮𝟏 as 

missing data and take expectations of the likelihood over 𝐮𝟏 and hence estimate gi allowing for the 

errors in the estimates of all the other SNP effects. We take the expectation of the log Likelihood 

of 𝐲 using 𝑉𝑎𝑟(𝐮𝟏|𝐲) = 𝐏𝐄𝐕(𝐮𝟏) where the prediction error variance (PEV) is derived from a 

BLUP approximation to the mixture model. We then maximize the expected likelihood with 

respect to each of the parameters including gi, the mixing proportions (𝐏𝐫), 𝛃 and 𝐯 as well as σe
2. 

We also trialled a speed-up scheme: when the SNP effect gi is very small (|gi| ≥ 0.00000001) 

after 50 iterations, it was not updated in future iterations but left at its current value. 

 

RESULTS AND DISCUSSION 

     To compare computing times for OPTBR and BayesR, three reference data sets related to milk 

yield were used, which have 632,003 SNPs with different numbers of animals ranging from 3,049 

in RefI (Holstein bulls Only), 11,527 in RefII (Holstein bulls and cows), to 16,214 in RefIII ( 

Holstein and Jersey bulls and cows) seen in Figure 1.  The results demonstrate the  advantage of 

OptBR over BayesR, and the advantage of the speed-up scheme. For instance, in the largest 

dataset time to convergence was 720 hours for BayesR but 28 hours for OptBR_Sp. 

      The accuracies of prediction using the EM were similar to BayesR with the exception of fat% 

(Table 1). A detailed investigation of the speed-up scheme was assessed using milk yield. Table 1 

shows that the speed up procedure did not sacrifice any accuracy (Table 1). 

 



 

 

 

Figure 1. The computational time in hours compared between BayesR, OptBR_Orig, and 

OptBR_Sp on three reference data sets (RefI with 3,049 animals, RefII with 11,527 animals, 

and RefIII with 16,214 animals). 

 

Table 1. The impact of the speed-up scheme 𝐂𝟏 on accuracy (Acc.), the proportion of 

variants in each distribution (Pr) and error variance (σe
2) using milk yield as an example. 

 

 Acc. Pr σe
2 

OptBR_Orig 0.66 [0.998371, 0.001583, 0.000007, 0.000039] 239409 

OptBR_Sp 0.68 [ 0.997545, 0.002394, 0.000009, 0.000052] 247965 

 

The results in Table 2 demonstrate the robust prediction ability of our algorithm OptBR for 

multi-breeds and across breed prediction. On milk production traits, both BayesR and OptBR have 

3%~7% advantage over GBLUP. On the fertility, three methods had the similar performance. The 

prediction accuracy for Australian red bulls was not as high as for Holstein, which is not surprising 

given there were no Australian Reds in the data set. The bias is the coefficient of regressing the 

phenotype of validation set on Genomic Estimated Breeding Value (GEBV), which shows the 

underestimation of three methods for SNP effects on most of the traits except Fertility. 

 

Table 2.  The accuracy (Acc.) and bias of predictions for BayesR, GBLUP and OptBR from 

the Holstein and Jersey multi-breed reference population using either the Holstein or 

Australian Red validation populations. 

 
 Milk Yield Protein Yield Fat% Fertility 

 Acc. Bias Acc. Bias Acc. Bias Acc. Bias 

Holstein validation 

BayesR 0.68 0.84 0.68 0.88 0.81 0.90 0.44 1.53 

GBLUP 0.63 0.83 0.65 0.85 0.74 0.85 0.44 1.66 

OptBR 0.68 0.90 0.68 0.79 0.77 0.83 0.44 1.27 

Australian Reds validation 

BayesR 0.22 0.60 0.12 0.49 0.45 0.92 0.27 1.03 

GBLUP 0.16 0.54 0.11 0.51 0.32 0.90 0.29 0.97 

OptBR 0.24 0.70 0.12 0.42 0.41 0.89 0.29 1.10 



 

 

We compared the ability of BayesR and OptBR to map QTL by investigating the number of 

SNPs with high posterior probabilities of having a non-zero effect (Figure 2). The number and 

position of QTL was similar between BayesR and OptBR. For milk yield, similar to BayesR, 

OptBR finds SNPs near to the genes CSF2RB  located on chromosome 5, SNPs near the casein 

complex on chromosome 6 (~87Mb), and SNPs related to CCL28/GHR on chromosome 20. The 

well-known gene DGAT1 (on chromosome 14) is mapped by both BayesR and OptBR. 

 
Figure 2. Posterior probability of non-zero SNP effect for milk yield from BayesR (top) and 

OptBR (bottom) across all chromosomes. 

 

The results suggest that OptBR will be useful for simultaneous genomic prediction and QTL 

mapping, particularly for very large data sets where computational efficiency is very important. 
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