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SUMMARY 

The aim of this study was to evaluate the accuracy of genomic prediction for lamb meat colour 

traits in New Zealand sheep. A total number of 7,602 animals born between 2010 and 2013 were 

genotyped with the High-Density Ovine BeadChip containing 606,006 single nucleotide 

polymorphisms. The traits included in this study were: loin redness (A24), yellowness (B24) and 

lightness (L24) measured 24 hours after blooming. The significance of the fixed effects and 

covariates were determined using general linear model. The final fixed effects models included 

contemporary group, sex and birthday deviation from the contemporary group mean as a covariate. 

The residual from the above model was used as phenotype for the genomic evaluation model 

development. The software GEBV was used to calculate direct genomic values (DGV), using 

GBLUP methodology. To evaluate the accuracy of genomic prediction, two sets of animals were 

formed based on birth year: training (birth years: 2010, 2011 and 2012) and validation (birth year: 

2013) sets. The accuracies for the three traits ranged from 0.29 to 0.33. Even though the accuracies 

were low, considering the costs and difficulty to measure and to select for meat quality traits, 

genomic selection might be a viable alternative. 

 

INTRODUCTION 

Meat colour traits have high economic relevance for the sheep industry as it is directly related 

to the appearance of the product, being an indicator of freshness and quality to consumers. In order 

to achieve consumer satisfaction, good management practices and environmental conditions for 

the animals and subsequently during meat processing play a very important role in the meat colour 

traits. However, it is known that meat colour has also a genetic component (e.g. Payne et al. 2009; 

Mortimer et al. 2014) and the gains achieved through genetic selection are permanent and 

cumulative. In order to genetically improve these traits, phenotypes must be recorded. However, 

they can only be recorded post-slaughter and are expensive to measure. Progeny testing not only 

increases the cost but also the generation interval. One possible solution to genetic improvement of 

these traits is genomic selection (Meuwissen et al. 2001), which has become a routine procedure 

because it reduces both progeny testing costs and generation interval. It refers to selection based 

on genomic breeding values, calculated from high density marker data. The benefits from genomic 

selection depend on the generation of accurate genomic breeding values (GEBVs). GEBV 

accuracies have been published for many traits in sheep (e.g. Daetwyler et al. 2012; Auvray et al. 

2014). However such estimates are scarce for meat colour traits. The aim of this study was to 

evaluate the accuracy of genomic prediction for meat colour traits in New Zealand sheep, using the 

GBLUP methodology. 

 

  



 
 

MATERIAL AND METHODS 

Phenotypic data. Pedigree and performance records were obtained from the Sheep 

Improvement Limited database (SIL, www.sil.co.nz). A total of 7,602 animals born between 2010 

and 2013 in the FarmIQ Progeny Test flocks (www.farmiq.co.nz) were included in this study. 

These animals were primarily progeny from terminal sire composites and Texel mated to a variety 

of maternal breeds. Animals were randomly selected to be slaughtered on given dates at 

commercial abattoirs. There were four to five slaughters per year and processing procedures and 

times were kept the same for each slaughter. The traits included in this study were: loin redness 

(A24), yellowness (B24) and lightness (L24) measured at 24 hours after blooming.  

On the day after the slaughter, the boneless loins were vacuum packed and stored at -1°C for 8 

weeks (to simulate the period that takes for chilled lamb to reach the retail market). At 8 weeks 

post-processing, loin pH was measured on the Longissimus dorsi muscle and three 2-cm thick 

slices of the loin were placed on small plastic trays and wrapped using semi permeable cling film 

and stored at 4°C (to simulate retail display) for colour measurements at 24, 48, 96 and 168 hours 

(seven days). Measurements were taken using a Minolta Chromometer (Konica Minolta Sensing, 

Inc., Osaka Japan). Three replicates were collected and the average value for each were analysed. 

The chromometer measures colour using the standard CIE L* a* b* colour variables (CIE L* = 

lightness/darkness; CIE a* = redness/brownness; CIE b* = yellowness). Only measurements at 24 

hours are presented in this paper and are taken to represent the maximum redness (A value) post 

blooming.  

The significance of the fixed effects and covariates were determined using the general linear 

model (GLM) procedure of SAS (SAS Inst., Inc., Cary, NC). The final fixed effects models 

included contemporary group, sex and to offset the differences in age of measurement, birthday 

deviation from the mean of the contemporary group was used as a covariate in the analysis. 

Contemporary group was defined by flock, birth year, sex, weaning mob (management group) and 

trait measurement/slaughter mob. The residual for each animal after adjusting for the above effects 

was used as the phenotype for the GEBV model development.  

 

Genomic data. Marker genotypes were obtained using the Illumina High-Density Ovine 

BeadChip (Illumina Inc., San Diego, CA, USA), containing 606,006 single nucleotide 

polymorphisms (SNPs). SNPs were excluded from the analysis if minor allele frequency was less 

than one percent, call rate less than 90%, if they were located on the sex chromosomes, did not 

have known chromosome and/or position on the genome, had duplicated map positions (2 SNPs 

with the same position but with different names) or an extreme departure from Hardy Weinberg 

equilibrium (p < 10
-15

). A total of 519,186 SNPs were retained for further analyses after filtering.  

The software GEBV (Sargolzaei et al. 2009), was used to calculate direct genomic values 

(DGV), using the GBLUP methodology. The following model was used in genomic analysis: 

𝒚 = 𝟏µ +𝑾𝒂 + 𝒆, where y is the vector of phenotypes adjusted for fixed effects, µ is the 

overall mean, a is the vector of random animal DGVs, e is the vector of random residual effects, 1 

is a vector of 1s and W is the design matrix linking records to animal DGVs. The DGVs were 

assumed normally distributed with mean zero and variance equal to G*𝝈𝒈
𝟐 , where G is the 

genomic relationship matrix based on the SNP markers and 𝝈𝒈
𝟐  is the genetic variance. The 

random residual effects were assumed normally distributed with mean zero and variance equal to 

I*𝝈𝒆
𝟐, where I is an identity matrix and 𝝈𝒆

𝟐 is the residual variance. 

To evaluate the accuracy of genomic prediction, two sets of animals were formed based on 

year of birth: training (birth years: 2010, 2011 and 2012) and validation (birth year: 2013) sets. For 

each trait, 10 runs were performed where each time a randomly selected group of approximately 

300 animals born in 2013 (validation set) were taken as the validation set and all the animals from 

http://www.sil.co.nz/
http://www.farmiq.co.nz/


 
 

the training. The youngest cohort of animals were used in validation to mimic what would happen 

in practice and the number of 300 was chosen in order to keep a practical number of animals in the 

validation set. The genomic prediction accuracy in the validation set was calculated as the Pearson 

correlation between DGV and adjusted phenotypes divided by the square root of heritability. The 

heritability was estimated from the same dataset using Restricted Maximum Likelihood (REML) 

procedures fitting an animal model and the same fixed effects described before, using ASReml 3.0 

(Gilmour et al. 2009).  

 

RESULTS AND DISCUSSION 

Number of observations, trait means (± SD), trait range, coefficient of variation and the 

estimated heritabilities (± SE) are given in Table 1. The traits included in this study had low 

heritability estimates. Despite the variation in heritabilities, the DGV accuracy estimates were 

similar and ranged from 0.29 to 0.33 (Table 2). L24 presented the highest Pearson correlation 

between DGVs and adjusted phenotypes; however B24 presented a lower heritability and 

consequently the accuracy estimates were similar (0.32 and 0.33, respectively).  

 

Table 1. Trait statistics and heritability estimates 

 

Trait1 N Mean ± SD Range CV (%) h2 ± SE 

A24 7,602 16.79 ± 2.51 9.62 – 24.44 14.98 0.17 ± 0.03 

B24 7,601 12.82 ± 2.65 5.68 – 20.31 20.68 0.11 ± 0.02 

L24 7,601 40.45 ± 3.43 29.09 – 51.25 8.47 0.16 ± 0.03 
 

1A24: redness/brownness; B24: yellowness; L24: lightness/darkness; N=number of animals; SD=standard 

deviation; CV=coefficient of variation; h2=heritability; SE= standard error.  
 

One reason that may contribute to the moderately low accuracies may be the low heritabilities 

of the traits. The accuracy estimates presented are global accuracies and robust accuracies could 

differ in various breed subgroups. Although our reference set appears large, almost all animals are 

crossbreds and/or composites from a variety of breeds. According to Saatchi et al. (2011) the 

validation is sensitive to the choice of the validation sample and to the pedigree relationships 

between the animals contributing to the validation and training sets, and the accuracies of DGVs 

are dependent on the strength of genetic relationships between the training and validation sets. It 

highlights the importance of maintaining an approximately constant average genetic relationship 

between animals in the training set and younger animals available for selection. One alternative is 

to define training and validation sets that are more related and also to evaluate other 

methodologies such as genomic evaluations using a single step procedure (Misztal et al. 2009) that 

would allow including phenotypes of non-genotyped individuals in the predictions. 

In general, low accuracies of genomic breeding values limit the benefit from genomic 

selection. However, for traits such as meat color that are difficult to improve by traditional 

selection, genomic selection will be an important tool. The genomic values would help to predict 

breeding value of young selection candidates (without their own performance). It would result to 

reduced costs, shorten generation intervals, and hence accelerate the rate of genetic gain. However, 

future investigations are needed in order to find alternatives to increase the genomic breeding 

values accuracies for meat colour traits. 

It is also important to highlight the need for the industry to continue investing in phenotyping 

and genotyping animals to create and maintain good reference and validation sets to develop 

accurate genomic predictions. 

 



 
 

Table 2. Number of individuals in training and validation populations and accuracy of 

genomic prediction for meat colour traits 

 

Trait  N in training N in validation Mean accuracy1 (± SD) 

A24  5,980 1,622 0.29 ± 0.08 

B24  5,979 1,622 0.33 ± 0.11 

L24  5,979 1,622 0.32 ± 0.04 
 

1Mean accuracy estimated via 10 groups of around 300 animals. N=number of animals; SD=standard 

deviation; A24=redness/brownness; B24=yellowness; L24=lightness/darkness.  

 

CONCLUSION 

Genomic selection is likely to be a valuable tool to help in the improvement of difficult to 

measure phenotypes and low heritability traits such as meat colour. The findings in this study 

show that it is possible to generate molecular breeding values for rams at an early age for selection 

and breeding, thus reducing both generation interval and the costs of progeny testing. Further 

research will help to improve the accuracies of genomic breeding values for meat colour traits. 
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