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SUMMARY 

 Genotype by environment (GxE) interaction can reduce genetic gain because there is often 

insufficient information for accurate selection in each environment. Traditionally the estimation of 

GxE effects has been based on the performance of half siblings across environments. This limits 

the estimation of GxE to specifically designed datasets with close relatives where all realized 

relationships may not be utilized. Genomic information can also be used to link animals and 

presents an opportunity to compare genotypes across different environments using realized 

relationship information. This study examines the use of genomic information to estimate GxE 

interaction. The genetic correlation between animal phenotypic performance in two different 

environments was estimated using pedigree or genomic information. A higher genetic correlation 

between environments was observed when using genomic information (0.9) than when using 

pedigree information (0.71). This study suggests that genomic information may be a useful 

alternative to pedigree information in understanding GxE in livestock populations. 

  

INTRODUCTION 

 In livestock production, animals are recorded and selected in a wide range of environments. 

While for most economically important traits there is little evidence for genotype by environment 

interaction (GxE), for some traits, animals or genotypes may perform differently in each 

environment (i.e. across different geographic locations or from one year to another). This can 

involve a change in the differences between alternative genotypes (often referred to as scale 

effects) and it can also relate to a change in the ranking of genotypes across environments.  

Traditionally, GxE interactions can be estimated by measuring relatives across environments. 

Genotype by environment interactions can be estimated using mixed model analyses treating 

performance across environments as two different traits (Falconer 1952) and estimating the genetic 

correlation between performances across each environment. Past studies examining GxE have 

been limited to experimental designs that primarily focus on the use of common sires across 

various environments. The advent of genome-based technologies allows for the possibility of 

changing the way GxE interactions may be estimated. 

Genome-wide association studies and genomic prediction have become common place for 

the prediction of disease risk in human populations and for predicting genetic merit in livestock 

(Goddard 2012). Genome-wide association and genomic prediction rely on a group of individuals 

with both genotypic and phenotypic information to enable the prediction of marker effects 

(directly or indirectly). Often these phenotypes come for a wide range of environments and the 

genomic information can be used to define the covariance between relatives (in the form of a 

genomic relationship matrix (GRM)) (VanRaden 2008). Genomic information presents an 

opportunity to enable a more diverse range of animals, not just close pedigree relatives, to 

contribute to estimating a genetic correlation between environments. It also presents the 

opportunity to observe whether specific genomic regions are more important than others for 

performance in varying environments.  

The aim of this study was to use genomic information to estimate GxE and to examine the 

impact of such information when compared to pedigree based estimates. 



METHODS 

 The data used in this study consisted of phenotypic and genotypic records from Merino 

animals in the Australian Sheep Cooperative Research Centre (CRC) information nucleus flock 

(INF). The INF is a specifically designed dataset that includes animals that have been recorded in 

eight environments across Australia. This dataset consisted of a dataset of phenotypic and 

genotypic records from 4433 Merino animals for the Post Weaning Weight (PWWT) trait. This 

dataset was further broken down such that phenotypic data from 1807 animals from 227 sires 

measured across two environments were extracted for the analysis. Location 1 (E1), Armidale 

(NSW) is a temperate environment with a primarily summer-dominant rainfall (n=921) and 

Location 2 (E2) Katanning (WA) is located in a winter-dominate rainfall zone (n=886).  

All animals in each dataset were genotyped using the Illumina 50K ovine SNP chip. All SNP 

in this dataset underwent a number of genotyping quality control measures (see Daetwyler et al. 

(2010) and 48 599 markers remained following the quality control. 

Genotype by environment interaction was estimated using both pedigree and genomic 

information. Phenotypic performance in the two environments was modelled as two separate traits. 

A bivariate animal model was fitted in ASReml (Gilmore 2009) and the genetic correlation 

between performance across environments was estimated using either a genomic or pedigree based 

relationship matrix. The following fixed effects were fitted in the analysis of PWWT: Sex, birth 

type, rearing type, age of dam, contemporary group (birth year • site • management group) and 

age-at-trait recording. We assumed the following model;  

 

𝑦𝑖 =  𝑋𝑖𝑏𝑖 + 𝑍𝑖𝑎𝑖 + 𝑄𝑖𝑠 + 𝑒𝑖 (1) 

 

where yi is a vector of phenotypes for environment i, Xi is a design matrix relating the fixed effects 

(as described above) to each animal for environment i, bi is a vector of fixed effects, Zi is a design 

matrix allocating records to breeding values, a is a vector additive genetic effects for animals, Qi is 

a matrix relating animals to genetic groups and s is a vector of genetic group effects and ei is a 2x2 

diagonal matrix of random normal deviates 𝐈σ𝑒𝑖
2 . Furthermore V(a) = [

Aσ𝑎1
2 Aσ𝑎

Aσ𝑎 Aσ𝑎2
2  ] where σ𝑎𝑖

2  if the 

genetic variance for environment i and σ𝑎  is the covariance between environments and A is the 

numerator relationship matrix. In the genomic analysis, the genomic relationship matrix (GRM) 

replaced the A such that V(g) = [
Gσ𝑔1

2 Gσ𝑔

Gσ𝑔 Gσ𝑔2
2  ] (VanRaden 2008).  

 Marker effects for each environment were also estimated using single marker regression 

using the R package lm. The model fitted was 

 

𝑦 = 𝑋𝑏 + 𝑄 + 𝑆𝑁𝑃𝑗 + 𝑒𝑖  (2) 

 

Again y is a vector of phenotypes, X is a design matrix relating the fixed effects (as described 

above) to each animal.  Genetic groups (Q) were fitted as fixed effects. Each SNP was individually 

fitted until all markers had been tested. In this analysis three groups of phenotypic data were used 

to estimate the marker effects; the complete INF dataset of Merino animals with PWWT records 

(n=4433) across all eight environments, records from E1 (n=921) and records from E2 (n=886). 

The 500 most significant markers from E1 and E2 were then used to estimate a correlation across 

environments.  

  

RESULTS 

 A moderate genetic correlation between environments was estimated for PWWT in Merino 

sheep using pedigree information (Table 1). By contrast, when the GRM was used to define the 



covariance between individuals the genetic correlation between performances across environment 

was higher. Similar variance components were estimated for E2 when using either genomic or 

pedigree information. However, large differences between the variance component estimates were 

observed for E1 which contributes to the variable genetic correlation estimates. There was a high 

standard error surrounding each genetic correlation such that each correlation was not significantly 

different however it is interesting to observe such large dissimilarities between the estimates.  

 
Table 1. Genetic variance (Va), Phenotypic variance (Vp), heritability (h2) and genetic correlation (rg) of 

performance across alternative environments using either pedigree or genomic information (S.E). 

 Pedigree Genomic 

 E1 E2 cov rg E1 E2 cov rg 

Va 10.35 13.00 8.32 0.71 

(0.18) 

6.79 12.15 8.192 0.90 

(0.15) 

Vp 15.55 23.04   15.19 22.77   

h2 0.66 

(0.11) 

0.56 

(0.12) 

  0.44 

(0.074) 

0.53 

(0.085) 

  

LogL -3458.36 -3434.29 

  

The marker effects were different across environments (Figure 1). When information from 

eight environments was used to estimate marker effects a large significant peak was observed on 

Chromosome 6. This location is consistent with that reported by Al-Mamun et al (2014). The 

strength of this peak reduced when the dataset was limited to either location 1 or 2 information 

(Figure 1b and 1c). Figure 1d shows the relationship between the effects of the most significant 

markers from each environment (E1 and E2).  

 
Figure 1 Manhattan plot of marker significance using data a) from all eight INF environments b) from 

location 1 c) from location 2.  d) The relationship between the 500 most significant SNP from b & c. 



The correlation between the SNP effects of significant markers estimated from each 

environment was lower than that estimated from the bivariate analysis (0.39). Estimating marker 

effects from individual environments is somewhat problematic given the reduction in the number 

of records available to detect marker effects, which can only be improved by increasing the 

amount of data used to estimate such effects. Combining data from many environments allowed 

for greater statistical power to be achieved and for a significant region to be observed. If a 

significant GxE interaction was to exist, marker effects may also be affected by this interaction 

and therefore may not result in consistent predictions across environments (if data was separated 

into specific environments). Furthermore, the estimated correlation between significant effects 

may not be a true reflection of the actual genetic correlation across environments due to the high 

degree of similarity between significant markers (i.e. many markers are in fact tracing the same 

genomic region). There would have also been a large amount of Linkage disequilibrium between 

markers due to the structure of the data. This could be corrected for by fitting all markers within 

the model (i.e. RR BLUP) but given the equivalence between gBLUP and RRBLUP (Habier et al 

2013) the current gBLUP analysis would have resulted in a better estimate of the genetic 

correlation between environments.  

The reasons for the disparity between pedigree and genomic estimates are not completely 

clear. The Log likelihood from each analysis suggests that using genomic information was in fact a 

better model, significantly increasing the likelihood of the data. This increase, however, may have 

been due to a number of factors. The first explanation is that the GRM may have better 

parameterized the relationship between the commercial dams that were used to create this dataset 

and better corrected for the genotypic effects across environments than what was captured by 

pedigree. A second explanation is that the GRM may have also included some genetic group 

information that was not available to the pedigree based matrix and could not be separated from 

the GRM. This would imply that the genomic estimate may be overestimating the genetic 

correlation across environments.   

  

CONCLUSION 
 Genotype by environment interactions can be estimated using either pedigree or genomic 

information. Genomic information allows for the comparison of all animals across environments, 

not just animals from sire families or that have close pedigree links. Estimates of GxE may be 

different when comparing pedigree or genomic relationships and careful consideration needs to be 

made when interpreting such differences.  
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