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SUMMARY 

Liveweight data from walk-over-weigh technology on NZ dairy farms provides a potential 

source of daily or average liveweight data for genetic selection. In this study, mixed models 

utilising both fixed and random regression with varying orders of Legendre polynomials or 

eigenvectors were assessed to model the longitudinal properties of liveweight records of New 

Zealand dairy cows. Higher order models fitted the data best despite the subsequently large 

increase in number of parameters. The choice of either Legendre polynomials or eigenvectors as 

the set of basis functions made no significant difference. Limits to model order will need to be 

applied on the basis of assumptions concerning data covariance structure and desired number of 

liveweight-derived traits for selection. Additionally, methods developed here for estimation of 

genetic covariance of regression coefficients and for inversion of the mixed model equation matrix 

can be extended to models for which pedigree relationships are also taken into account. 

 

 INTRODUCTION 

Liveweight (LW) is a trait which changes over time, and may thus be considered as 

“longitudinal” or “infinite-dimensional” (Kirkpatrick et al., 1994). Some of the approaches that 

have been applied to model these repeated data types include repeatability, multivariate and 

random regression (RR) models (Mrode and Thompson, 2014).  

The use of RR models has become a preferred method to analyse longitudinal data for animal 

genetic evaluation. These models use a fixed regression to describe the average shape of a 

lactation or growth curve, and a random regression for each animal to account for deviations from 

the fixed regression (Schaeffer and Deckers, 1994). RR models have been applied to model test-

day records of milk traits in dairy cattle (Jamrozik and Schaeffer, 1997; Olori et al., 1999), as well 

as growth and mature weight in beef cattle (Meyer, 1999, 2004; Speidel et al., 2010) and other 

livestock. In these models, Legendre polynomials are typically used as the set of basis functions, 

however they can suffer from a Runge effect (Runge, 1901), where a higher order polynomial 

describing the general curve has high oscillations in the boundary areas. Eigenvectors avoid this 

problem, and just a few eigenvectors may adequately account for the covariance structure of the 

data, so they may provide a better set of basis functions in a RR model. 

The current animal evaluation model for LW of NZ dairy cattle is based on a combination of 

both visual score and static weights. Walk-over-weigh (WOW) records per animal in commercial 

dairy sheds provide the opportunity to incorporate this new data into the current LW models. 

Utilisation of these data may also allow for better characterisation of the seasonal LW curve. The 

objective of this study was to compare RR models using either Legendre or eigenvector basis 

functions of various orders with longitudinal LW data, albeit without considering pedigree. 

 

MATERIALS AND METHODS 

Data. A total of N = 58,532 WOW records collected on na = 2,899 2-year-old New Zealand 

dairy cows born in the 2010/2011 season were extracted from the Dairy Industry Good Animal 

Database (DIGAD). The data consisted of individual animal weekly average LW collected over nt 

= 40 weeks from lactation start (defined as weeks-in-milk, WIM), from ncg = 6 herds. All data 

manipulation, modelling and analysis were performed with R statistical software. 



Models. Mixed models were used in the analysis, whose fixed component included a 

regression on either Legendre or eigenvector basis functions which would describe the general 

liveweight curve, and whose random component described individual deviations from the general 

curve. Following the notation of Mrode & Thompson (2014), models used were of the form: 

 𝑦𝑡𝑖𝑗 = ℎ𝑡𝑑𝑖 + ∑ 𝜓𝑡𝑘𝛽𝑘

𝑛𝑓

𝑘=0

+ ∑ 𝜙𝑡𝑘𝑎𝑗𝑘

𝑛𝑟

𝑘=0

+ 𝑒𝑡𝑖𝑗 (1) 

Where ytij is the test day record for cow j on day t within contemporary group (herd test day) i, 

ψtk is the value of a k
th

 basis function (Legendre or eigenvector) evaluated at time t, βk ∈ β, the 

vector of fixed regression coefficients, ϕtk is the value of a k
th

 Legendre polynomial evaluated at 

time t, and ajk ∈ aj, the vector of random regression coefficients (animal effects) for animal j 

(where aj ∈ a, the full vector of random regression components). The set of basis functions for 

fixed effects are of order nf, and for random effects are of order nr. The matrix notation (2) and 

mixed model equation (MME) notation (3) for this model are as follows: 

 𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞 (2) 
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Here it is assumed that var(a) = I⊗K and var(e) = 𝐈𝜎𝑒
2 (necessary priors), where ⊗ is the 

Kronecker product and K is an nr-dimensional covariance structure of the random regression 

coefficients for animal effects. X and Z are the incidence matrices corresponding to the effect 

solutions (superscript T indicates matrix transpose). Here Xb = X1b1+X2β, the sum of 

contemporary group fixed effects (htdi ∈ b1) and fixed regression components respectively. It 

should be noted that our approach does not yet take into account the pedigree relationships, which 

would otherwise partition the animal effect into additive animal genetic and permanent 

environmental effects. If this were the case, the MME would be in a 3×3 partition, with nr-

dimensional estimated covariance structures of G and P, in Kronecker product with 𝐀−1𝜎𝑒
2 and 

𝐈𝜎𝑒
2, respectively. As it stands, we instead used an estimate of the combined covariance of G and 

P; K, which was the genetic covariance of animal effects covA(a) calculated from the phenotypic 

covariance of the data covP(y), with y structured as an animal × test-week dataset. Liveweight 

heritability was assumed to be h
2
 = 0.35; residual variance was assumed to be 𝜎𝑒

2 = 400kg. 

 𝐊 = covA(𝐚) =
ℎ2

2
(𝐙T𝐙)−1𝐙TcovP(𝐲)((𝐙T𝐙)−1𝐙T)T (4) 

Basis function sets. For Legendre polynomials, the setup of an order k incidence matrix (for a 

basis set of k functions for either the fixed or random model component) was calculated as X (or 

Z) = ML, where L was the k×k matrix of Legendre polynomial coefficients, and M was the N×k 

matrix of each observation’s week-in-milk t transformed to the [-1, 1] interval (5) and evaluated 

for the k different degrees of monomials. 

 𝑥𝑚 =
2(𝑡𝑚 − 𝑡𝑚𝑖𝑛)

(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)
− 1,        𝑚 ∈ {1 ⋯ 𝑁} (5) 

For eigenvectors, the setup of an order k incidence matrix was calculated as X = TEk, where T 

was the N×nt matrix for each observation’s WIM, and Ek was the nt×k subset of the k eigenvectors 

of the top k eigenvalues of the eigendecomposition of the phenotypic covariance matrix, covP(y) = 

EΛE
T
 (E is the matrix of all eigenvectors; Λ is the diagonal matrix of eigenvalues). 

Residual analysis. Akaike information criteria (AIC) (Akaike, 1974) were calculated for each 

model to provide a relative measure of model quality. For nested models, Likelihood ratio tests 

(LRT) (proven by the Neyman–Pearson (1933) lemma to be optimal for model selection) were 

also used to determine if any reduction in residuals between models was significant or not. 



Assuming normal distribution of residuals, the log-likelihood of a model was determined as a 

function of residual variance σ2
 and number of observations N: 

 ℓ𝑛(ℒ) = −
𝑁

2
(1 + ℓ𝑛(2𝜋𝜎2)) (6) 

From this, AIC = 2n - 2ℓ(ℒ) was calculated (where n = ncg + nf + nr .na was the total number of 

parameters), and for two nested models a likelihood ratio LR = 2ℓ𝑛(ℒM2) - 2ℓ𝑛(ℒM1) was 

calculated (for “null” model M1 nested within model M2). A chi-squared test using test statistic 

LR with degrees of freedom df = nM2 – nM1 would produce a value p = 1 – χ2
 which, for p < 0.05, 

would indicate that model M2 was significantly better than the simpler M1 model. 

MME matrix inversion. The block-structure of the MME matrix (dimension ncg + nf + nr.na) 

allowed for an alternative inversion of much smaller nr-dimensional matrices. If the data is ordered 

by animal, then the Z
T
Z component of the MME (3) will be block-diagonal, comprised of na sub-

matrices of dimension nr each. The same is true for 𝐈𝜎𝑒
2⨂𝐊−1, and so 𝐃 = 𝐙T𝐙 + 𝐈𝜎𝑒

2⨂𝐊−1 will 

be block-diagonal also. Given the Banachiewicz (1937) identity for of a partitioned matrix inverse, 

[
𝐀 𝐁
𝐂 𝐃

]
−1

= [
𝐒D

−1 −𝐒D
−1𝐁𝐃−1

−𝐃−1𝐂𝐒D
−1 𝐃−1 + 𝐃−1𝐂𝐒D

−1𝐁𝐃−1] , where 𝐒D = 𝐀 − 𝐁𝐃−1𝐂  (7) 

and the property of the inverse of a block-diagonal matrix being another block-diagonal matrix of 

individual block inverses, then it follows that the inverse of the MME matrix may simply be 

determined by way of calculating the inverse of each nr-dimensional sub-matrix of D (and the 

inverse of the small (ncg+nf)-dimensional Schur matrix SD). 

 

RESULTS AND DISCUSSION 

 

Varying model orders. For RR 

models with fixed Legendre component 

of nf ∈ {3, …, 7} and random 

component of nr = 3, the general 

polynomial representing the data 

(Figure 1) shows how the oscillations 

of higher order polynomials become 

apparent for nf ⪞ 5. Despite this, LRT’s 

between models of consecutive orders 

of fixed Legendre component nf ∈ {3, 

…, 20} with conserved random order nr 

∈{1, …, 3} showed significantly better fit for orders nf ≤ 9 (p < 0.005). However, residual variance 

was not longitudinally homogenous (even for varying random orders), indicating that higher order 

fixed effects may be required. Unlike the random regression component, increasing the fixed order 

makes almost no computational difference. However, under the assumption of a reasonably 

smooth longitudinal relationship between LW values, the fixed order should be limited. 

For RR models with fixed Legendre component of nf = 9 and random component of nr ∈ {1, 

…, 5}, residual variance decreases (and log-likelihood increases) with increasing nr (Table 1), and 

this variance also scales quite uniformly across season for different nr. LRT’s indicated that 

models were very significantly better with increase in random component order for nr ≤ 3, for both 

Legendre and eigenvectors models. The AIC was minimised for nr = 3, indicating that quadratic 

random animal effects are best. Increased parameters per animal should contribute in a 

biologically meaningful way, as it is upon those parameters that animals may be selected by. 

Therefore, while incorporating a random regression component into the model is advisable, the 

order of this component should not be too large; letting nr = 3 should be sufficient. 

 
Figure 1. Fixed regression curves for models with 

Legendre orders nf ∈ {3, …, 7} and nr = 3. 
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Table 1. AIC and LRT’s of models of Legendre or eigenvector fixed component nf = 9, and nr ∈{1, …, 5} 
 

 Legendre, nf = 9 Eigenvector, nf = 9 

Order nr 1 2 3 4 5 1 2 3 4 5 

ℓ𝑛(ℒ) (×103) -289 -280 -276 -273 -271 -289 -280 -276 -274 -272 

AIC (+5.7×105) 13,904 2,533 449 1,051 2,895 14,661 2,930 568 1,217 3,256 

LR (nr vs. nr-1)   17,169 7,882 5,196 3,954   17,529 8,160 5,148 3,760 

p = 1-χ2   0 0 1 1   0 0 1 1 

 

Legendre vs. eigenvector. Models with a fixed regression component of either Legendre 

polynomials or eigenvectors of order nf = 9 were compared via AIC values for their relative merit, 

for random component of Legendre orders nr ∈ {1, …, 5}. For any particular random order nr, 

Legendre models had slightly better AIC values than those of the eigenvector models (Table 1). In 

the absence of a measure of significance for AIC comparison, the default choice of regression 

function ought to remain as the Legendre polynomials. 

Pedigree information. Future inclusion of pedigree information ought to improve model fit 

even more due to increased utilisation of data via pedigree linkages. While the relationship matrix 

A would not be subject to inversion by the block-matrix inversion technique, the use of A
-1

 would 

allow for a similar technique for solving the model. Therefore the use of a full (including pedigree) 

RR model will have essentially no more computational complexity for random orders nr > 1. 

 

CONCLUSION 

In a RR model for WOW data, increasing orders of fixed and random regression components 

significantly improve the model in general, though these must be tempered by the practical 

realities of assumed longitudinal relationships and necessary number of parameters per animal. 

The choice of type of regression function (Legendre polynomials or eigenvectors) is insignificant. 

The future inclusion of pedigree relationships ought to ensure a much better depth of data per 

animal and subsequent model improvement. The use of block-matrix inversion will still ensure 

that computational complexity is significantly reduced. 
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