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SUMMARY 

 Traits such as feed efficiency in dairy cattle are likely to be influenced by the genome of the 

host and the composition and abundance of microbiomes in the rumen. Here we describe an 

integrative approach that utilizes both genomic (SNP) and rumen microbiome data to predict 

future residual feed intake (RFI). The approach was tested in a small sample, of 28 Australian 

Holstein-Friesian dairy cattle that had 30K SNP genomic predictions for RFI and rumen 

microbiome profiles. The genomic and microbiome profile predictions were combined using a 

linear regression model. Results are very preliminary due to the small size of the data set, 

however, the prediction accuracy in cross validation was maximized when both SNP and rumen 

microbiome profiles were used (r=0.57; 95% CI: 0.33:0.72). These results, while promising, 

should be repeated in a larger data set. 

 

INTRODUCTION 

Feed efficiency is a key economic trait for livestock species, including dairy cattle. One 

measure of feed efficiency is residual feed intake, which is the approximate difference between the 

actual feed intake and estimated feed intake based on a regression model that takes into account 

energy costs for body maintenance and production over a defined production period (Connor, 

2014). Macdonald et al. (2014) and Pryce et al. (2014) both demonstrated that genomic estimated 

breeding values (GEBV) for RFI could be derived which predict residual feed intake (RFI) with 

moderate accuracy. In addition to the cow’s own genome, the profile of the rumen microbiome 

(species composition and abundance) has been shown to be associated with some traits, 

particularly methane emissions (Ross et al. 2013a; Kittelmann et al. 2014). So an obvious question 

is, can we improve predictions of future RFI phenotypes by integrating genomic predictions from 

SNP genotypes with rumen microbiome profiles. This seems promising, as integration of genomic, 

transcriptomes, proteomics and metabolomics information has already returned high accuracy in 

predicting type 2 diabetes (Chen et al. 2012). The objectives of this study were to investigate: (1) 

can rumen microbiome profiles be used to predict RFI for dairy cattle? (2) can the accuracy of 

prediction be increased by integrating using GEBV and rumen microbiome profiles? 

 

MATERIALS AND METHODS 

The dataset included 28 first parity Australian Holstein-Friesian dairy cows which were born in 

2 different years at the Ellinbank research station, Victoria, Australia. Fifteen out of 28 cattle were 

born in July to September 2008, referred to here as FCE1 animals. The rest, referred as FCE2 

animals, were born in July to September 2009. Rumen samples and dry matter intake data were 

collected during 1
st
 lactation, which was in February 2011, at the age of 938 ± 12 day for FCE1 

cattle, and in November 2011, at the age of  812 ± 18 day for FCE2 cattle, respectively. All 

animals were fed similar diets, which constituted predominantly of alfalfa hay pressed into cubes. 

In lactating cows the diet was supplemented with crushed wheat. Feed was always available ad 

libitum. RFI phenotypes were calculated by regressing DMI on fixed effects and liveweight and 



growth in heifers and DMI on fixed effects, liveweight and production in lactating cows as 

described by Macdonald et al. (2014).  

To calculate GEBVs for the 28 animals, the reference dataset comprised a total of 815 

Australian growing heifers of which 74 also had RFI measurements in first lactation (Macdonald 

et al. 2014). The genotype data described by de Haas et al. (2012) that comprised 30,949 SNP 

were used to construct the genomic relationship matrix using the Yang et al. (2010) method. The 

analysis, using G-REML, was performed using ASReml software (Gilmour et al. 2009). A 

bivariate model similar to that derived from Pryce et al. (2015) was fitted, so that the covariance 

between growing heifer and cow RFI could be estimated. The model used was: 

𝑦𝑇 =  𝑋𝑇𝑏𝑇 + 𝑍𝑇𝑔𝑇 + 𝑒𝑇 

Where 𝑦𝑇  was the 2𝑥𝑛 matrix of observations on all traits, 𝑋𝑇 was the incidence matrix for fixed 

effects, 𝑏𝑇 was the matrix of solution of fixed effects, 𝑍𝑇 was an incidence matrix mapping records 

to animals, 𝑔𝑇 was the corresponding genomic breeding values for animals with genotypes for all 

traits, and 𝑒𝑇 was a 2𝑥𝑛 matrix of residual terms. The 𝑔𝑇 was assumed to be distributed as 

𝑁(0, 𝐺⨂𝐾), where 𝐺 was the animal by animal genomic relationship matrix and 𝐾 was a 2𝑥2 

matrix of additive genetic variances between heifers and cows. Then 𝑉(𝑒𝑇) = 𝑅⨂𝐼, where 𝑅 was 

a 2𝑥2 matrix of error variances and 𝐼 was an 𝑛𝑥𝑛 identify matrix. 

Twenty-eight microbiome samples were extracted using the PowerMaxSoil DNA Isolation kit 

(MoBio) and sequenced on the HiSeq 2000 (Illumina) as per Ross et al. (2013b). Raw sequencing 

reads were trimmed from 5’-end and retained for downstream analysis if the 5’-end reached a 

maximum of 3 bases whose phred quality score were <15; the average remaining read quality was 

≥20; and remaining read length was ≥50bp. This resulted in more than 268 million reads from all 

samples passed filtering. Trimmed reads were subsequently aligned to reference library using 

Bowtie2 (version 2.2.2; Langmead and Salzberg 2012). The reference library was composed of 

assembled rumen microbiome contigs from 3 smaller collections of sequences (Hess et al. 2011; 

Ross et al. 2012; Ross et al. 2013b). Contigs from the 3 sources were concatenated and sequences 

<250bp were removed. An overall alignment rate of 17.36% from all animals was attained and the 

distribution of sequences aligning to reference contigs was plotted in  Figure 1. 
 

 
Figure 1. A histogram of read distribution. The majority of contigs had 10 to 100 reads aligned to. 

Contigs that had less than 10 reads aligning were removed from analysis. 

 

Rumen microbiome profile prediction (RMP) for RFI was performed in the free R statistical 

software (version 3.1.2; The R Foundation for Statistical Computing; http://www.r-project.org/) 

http://www.r-project.org/


and package rrBLUP (Endelman et al. 2011) was used. A metagenomics relationship matrix 

calculated as per Ross et al. (2013a) was fitted into best linear regression model (BLUP) and 

validated using two-fold cross-validation (CV), where FCE1 and FCE2 were either training or 

validation sets and an alternative procedure, called leave-one-out where we sequentially removed 

just one animal from the dataset to estimate its genomic breeding value using the remaining data. 

Animals being predicted were always omitted from training set. Integrative (genomic and 

metagenomics) prediction was performed in R statistical software. Twenty-eight measured RFI 

values, GEBVs for RFI and RMP were fitted into a linear regression model. The coefficients in the 

output were multiplied with GEBV and RMP respectively to calculate the integrative predicted 

RFI. Accuracy was assessed by Pearson’s correlation, ‘r’, that is, the correlation between the 

measured values with predicted values. Ninety-five percent confidence interval (CI) was 

calculated via bootstrapping with 10,000 replicates. Coding scripts are available upon request. 

 

RESULTS AND DISCUSSION 

The accuracy of genomic prediction was 0.33 (95% CI: 0.07:0.59; Table 1). A non-zero 

accuracy was observed for RFI calculated using rumen microbiome profile prediction under leave-

one-out CV (r=0.49; 95% CI: 0.2:0.67; Table 1), but the accuracy of rumen microbiome profile 

prediction under two-fold CV was much lower (r= 0.08; 95% CI: -0.39:0.34; Table 1).  

When both the cow’s genome and rumen microbiome information were used for predicting 

RFI, the accuracies were the highest in both two-fold (r=0.38; 95% CI: 0.05:0.65; Table 1) and 

leave-one-out (r=0.57; 95% CI: 0.33:0.72; Table 1) testings. 

 
Table 1 accuracy comparison among genomic, metagenomics and integrative predictions 

 

Sequence source CV2 method Correlation  95% CI# Significant 

Cow’s Genome  Not available 0.33 (0.07, 0.59) Y 

Rumen microbiome  Two-fold 0.08 (-0.39, 0.34) N 

Leave-one-out 0.49 (0.2, 0.67) Y 

Integration1 Two-fold 0.38 (0.05, 0.65) Y 

Leave-one-out 0.57 (0.33, 0.72) Y 
1Integration: both cow’s genome and rumen microbiome information were used. 
2CV: cross validation. 
#95% Confidence interval of the Pearson’s correlation coefficient r based on 10,000 bootstraps. 

 

Our results showed two main findings: firstly, rumen microbiome profiles may be able to 

predict RFI in some circumstances; secondly, integrating genomic and metagenomics information 

can increase prediction accuracy. The idea of integrating genetic information has already been 

realised in human research (Chen et al. 2012), but to our knowledge this study is the first to apply 

it to predict RFI in livestock. Four main elements affect the performance of prediction from rumen 

microbiome profiles: the number of samples in the study, size of the reference library, diversity of 

reference library and sequence depth (Ross et al. 2012). Even though the number of samples 

involved in our study was small, by updating the rumen reference library and maintaining a 

sequence depth of  a minimum of 3 million reads, we obtained a similar accuracy as that in Ross et 

al. (2013a) study. We saw a growth of overall alignment rate as compared with Ross et al. 

(2013a). This could continually be improved by adding internationally collaborative references 

such as the Hungate1000 database (Nordberg et al. 2014). Currently rumen samples are still 

relatively hard to obtain; therefore a wider mining of ruminant metagenomics sequencing data will 

rely on technical improvements on sample collection. 

In conclusion, microbiome information appears to be useful in predicting RFI of the same host 

animals. Prediction accuracy could be increased when both cow’s genome and rumen microbiome 



profiles are used together, though given the small samples size used here, the analysis needs to be 

repeated in a larger data set. 
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