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Highlights 
• Rainfall-runoff model built for a small site achieved a test Nash–Sutcliffe efficiency (NSE)=0.88.  
• Proposed deep network structure allows physical parameters to be incorporated in modelling. 
• The impact of seasonality and infrastructure age on GIs’ hydrological performance is quantified. 

 

Introduction 
Green infrastructures (GIs), also known as sustainable urban drainage systems (SuDS) or water sensitive 
urban design (WSUD), are eco-friendly supplements to conventional urban drainage networks. In recent 
years, many numerical models have been developed to predict GIs’ hydrological performances under 
different rainfall conditions and to study the involved hydrological processes (Elliott and Trowsdale, 2007). 
Most of the models are process-driven, where the hydrological processes are characterized using 
physically-based or empirical equations. However, these models are sometimes inapplicable due to lack of 
information on the physical properties of the study site or the involved hydrological processes. The 
performances of GIs may vary in different seasons and can be affected by infrastructure age, among many 
other factors (Lewellyn et al., 2016). The time-varying performances of GIs can be hard to simulate as many 
current models are developed for stationary systems. 
 
Data-driven models do not explicitly require information on the physical properties or the involved 
processes of the studied system. They can be trained to learn the correlations between the state variables 
of a system given only observation data. For instance, Yang and Chui (2018) built data-driven models to 
predict water level and overflow occurrence of GIs using inflow and weather data. One type of data-driven 
models, deep learning models are especially suitable for these tasks, as they excel in modelling high-
dimensional data, such as high-resolution rainfall and runoff time series. However, excluding the physical 
parameters from modelling can have some negative consequences. For example, it can be difficult to assess 
the impact of infrastructure aging, as stationary correlations are normally assumed between the input and 
output variables of interests. This problem may be resolved by incorporating time-varying parameters into 
modelling. This research aims to show that time-varying parameters can be used as inputs in deep learning 
models by adopting deep neural networks of specific topology. This research also attempts to illustrate that 
the inclusion of time-varying parameters allows the time-varying properties of the GIs to be reflected in 
modelling results. 
 

Methodology 
The long short-term memory neural networks (LSTM) are used in this study, as they are can capture the 
long-term dependency between input and output variables (Gers et al., 1999). As shown in Figure 1, the 
model maintains a hidden state at each time step (ℎ! through ℎ"), which can be modified by rainfall and 
decoded to runoff through some functions in chronological order. The value of the state affects how the 
state is updated at the current time step. The initial state, therefore, may have continuing effects on the 
update scheme. The context variables, such as rainfall occurring season and infrastructure age, are 
assumed to influence the overall state update scheme and are therefore used to infer the initial state. The 
functions for initializing, updating, and decoding the hidden states are all represented by neural networks, 
whose parameters are optimized through training.  



15th International Conference on Urban Drainage, Melbourne, October, 2021 

Page 2 

 
Figure 1. Structure of the recurrent neural network model. Arrows indicate flow of information and represent transformations that 
map random variables to other variables or hidden values. ℎ! through ℎ" are vectors corresponding to hidden states of the system. 
 
Case study 
The study site locates in Washington Street, Geauga County, Ohio, the U.S., where green roofs, porous 
pavements, and bioretention systems were implemented to treat stormwater runoff generated by a 
commercial lot (Darner and Dumouchelle, 2011). Rainfall and runoff at this site were monitored by the 
United States Geological Survey (USGS) since 2009. Hydrological property of this site was found to vary over 
time (Darner and Dumouchelle, 2011, Darner et al., 2015). The rainfall occurring month and the 
accumulated rainfall depth since 2009 (which reflects the overall workload of infrastructure) are used as 
context variables in this study. The 10-min rainfall and runoff data recorded between 2009 and 2013 and 
the context variables are divided into the training, validation (for monitoring and guiding training 
processes), and test sets to evaluate prediction accuracy. Individual rainfall events are extracted from 
continuous data using a 24-hour dry spell threshold (Guo and Senior, 2006). The influence of context 
variables is measured by the variations among the predicted outflow hydrographs, which are obtained by 
deliberately varying the values of the context variables while fixing the rainfall input. 
 

Results and discussion 
The predicted outflow hydrograph for the test set is shown in Figure 2a. The low to moderate flows were 
accurately modelled, and relatively small variations can be observed for the high flows. The rising and 
recession limps were also precisely modelled. The performance metrics also confirm the excellent 
prediction accuracy: NSE = 0.88 and R2 = 0.89 for the test set, and NSE = 0.94 and R2 = 0.94 for training set. 

 
Figure 2. (a) Outflow hydrograph of the study site for the test set, and (b) variations of the predicted hydrographs when varying the 
context variations and fixing the rainfall input. For clarity, only part of the result is shown, and runoff events occurring in different 
time between 2009 and 2013 are plotted close to each other.  
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The variations of the predicted hydrographs are obtained by varying infrastructure age from small to large 
values or rainfall occurring season through all the possible values, while fixing the rainfall time input (as 
shown in Figure 2b). The results suggest that the context variables can have considerable impacts on 
predictions, especially for the low flows. Rainfall occurring season seems to have a higher impact on 
outflow predictions for having larger prediction variations when comparing to infrastructure age. Other 
context variables may be used as input and can be incorporated into neural network models in different 
ways (besides initializing the hidden state), these topics are worthy of further investigation. For example, 
the infiltration rates of GIs measured over time may be incorporated into modelling, and 1-D convolutional 
neural networks maybe used instead of LSTM. 
 

Conclusions and future work 
This study shows that deep learning methods can be useful tools for predicting hydrological responses of 
green infrastructures, especially when process-based models are inadequate due to insufficient knowledge 
of the studied system or the system’s time-varying properties. Context information, such as infrastructure 
age and rainfall occurring season, can be included as input variables of deep neural network models by 
carefully designing the network topology. Incorporating context information in modelling potentially 
increases prediction accuracy and also allows the time-varying performance of green infrastructures to be 
reflected in the modelling results.  
 
Similar to process-based models, the states of the modelled system at each time step are also encoded 
using numerical values in deep learning models. Inspecting the hidden state evolution through time and 
comparing the state update schemes of different types of models can potentially improve the 
understanding of the studied system. Further investigations on the effectiveness of adopting different 
neural network structures are also recommended. 
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